Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

2D bismuth oxyselenide semiconductor for future electronics

Abstract

The continuous downscaling of silicon transistors has driven exponential improvements in computing performance and energy efficiency, but sub-10 nm channel lengths pose fundamental challenges in speed and power consumption. Emerging materials and architectures offer promising pathways for further miniaturization. Bismuth oxyselenide (Bi2O2Se), an air-stable 2D semiconductor, exhibits high mobility, a suitable bandgap and a native high-κ oxide (Bi2SeO5), resembling silicon and its SiO2 counterpart. These properties suggest compatibility with industrial processes, positioning Bi2O2Se for next-generation high-performance computing. This Review summarizes recent advances in material synthesis, wafer-scale integration and device architectures, highlighting key challenges in the lab-to-fab transition. Finally, a roadmap is proposed to guide future innovations in ultra-scaled, energy-efficient electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Channel engineering based on 2D Bi2O2Se for future transistors.
Fig. 2: Key developments in wafer-scale synthesis of 2D Bi2O2Se crystals.
Fig. 3: High-κ native-oxide dielectric integration for 2D Bi2O2Se.
Fig. 4: Key developments of high-performance 2D Bi2O2Se-based transistors.
Fig. 5: Key developments and perspective of multifunctional 2D Bi2O2Se-based devices for monolithic 3D integration.
Fig. 6: Roadmap for 2D Bi2O2Se towards future chip applications.

Similar content being viewed by others

References

  1. Bardon, M. G. et al. DTCO including sustainability: power-performance-area-cost-environmental score (PPACE) analysis for logic technologies. IEEE IEDM 41.4.1–41.4.4 (2020).

  2. Jones, S. W. Cost simulations to enable PPAC aware technology development. In International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) 215–218 (2021).

  3. Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    Article  Google Scholar 

  4. International Roadmap for Devices and Systems 2023 Edition, More Moore. https://irds.ieee.org/ (2023).

  5. Lundstrom, M. Moore’s law forever? Science 299, 210–211 (2003).

    Article  Google Scholar 

  6. Wu, S. Y. et al. A 3 nm CMOS FinFlex™ platform technology with enhanced power efficiency and performance for mobile SoC and high performance computing applications. IEEE IEDM 27.5.1–27.5.4 (2022).

  7. International Roadmap for Devices and Systems 2022 Edition, More Moore. https://irds.ieee.org/ (2022).

  8. Zeng, S., Liu, C. & Zhou, P. Transistor engineering based on 2D materials in the post-silicon era. Nat. Rev. Electr. Eng. 1, 335–348 (2024).

    Article  Google Scholar 

  9. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  Google Scholar 

  10. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  Google Scholar 

  11. Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).

    Article  Google Scholar 

  12. Uchida, K. et al. Experimental study on carrier transport mechanism in ultrathin-body SOI NAND p-MOSFETs with SOI thickness less than 5 nm. IEEE IEDM 47–50 (2002).

  13. Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, aab2750 (2015).

    Article  Google Scholar 

  14. Franklin, A. D., Hersam, M. C. & Wong, H.-S. P. Carbon nanotube transistors: making electronics from molecules. Science 378, 726–732 (2022).

    Article  Google Scholar 

  15. Nomura, K. et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003).

    Article  Google Scholar 

  16. Cao, W. et al. The future transistors. Nature 620, 501–515 (2023).

    Article  Google Scholar 

  17. Jayachandran, D., Sakib, N. U. & Das, S. 3D integration of 2D electronics. Nat. Rev. Electr. Eng. 1, 300–316 (2024).

    Article  Google Scholar 

  18. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article  Google Scholar 

  19. Jayachandran, D. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 625, 276–281 (2024).

    Article  Google Scholar 

  20. Kang, J.-H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).

    Article  Google Scholar 

  21. International Roadmap for Devices and Systems 2018 Edition, More Moore. https://irds.ieee.org/ (2018).

  22. Wu, J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).

    Article  Google Scholar 

  23. Li, T. et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 4, 731–739 (2020).

    Google Scholar 

  24. Zhang, Y. et al. A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm. Nat. Electron. 5, 643–649 (2022).

    Article  Google Scholar 

  25. Illarionov, Y. Y., Knobloch, T. & Grasser, T. Native high-κ oxides for 2D transistors. Nat. Electron. 3, 442–443 (2020).

    Article  Google Scholar 

  26. Chen, C. et al. Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se. Sci. Adv. 4, eaat8355 (2018).

    Article  Google Scholar 

  27. Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).

    Article  Google Scholar 

  28. Zhang, C. et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023).

    Article  Google Scholar 

  29. Wang, J. et al. T-square resistivity without Umklapp scattering in dilute metallic Bi2O2Se. Nat. Commun. 11, 3846 (2020).

    Article  Google Scholar 

  30. Wu, J. et al. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 17, 3021–3026 (2017).

    Article  Google Scholar 

  31. Tan, C. et al. Wafer-scale growth of single-crystal 2D semiconductor on perovskite oxides for high-performance transistors. Nano Lett. 19, 2148–2153 (2019).

    Article  Google Scholar 

  32. Kang, M. et al. Low-temperature and high-quality growth of Bi2O2Se layered semiconductors via cracking metal–organic chemical vapor deposition. ACS Nano 15, 8715–8723 (2021).

    Article  Google Scholar 

  33. Kang, M. et al. Layer-controlled growth of single-crystalline 2D Bi2O2Se film driven by interfacial reconstruction. ACS Nano 18, 819–828 (2024).

    Article  Google Scholar 

  34. Tan, C. et al. 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023).

    Article  Google Scholar 

  35. Yu, M. et al. Integrated 2D multi-fin field-effect transistors. Nat. Commun. 15, 3622 (2024).

    Article  Google Scholar 

  36. Yin, J. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 9, 3311 (2018).

    Article  Google Scholar 

  37. Li, J. et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 28, 1706437 (2018).

    Article  Google Scholar 

  38. Xu, S. et al. Exploiting two-dimensional Bi2O2Se for trace oxygen detection. Angew. Chem. Int. Edit. 59, 17938–17943 (2020).

    Article  Google Scholar 

  39. Sirohi, A. & Singh, J. 2D Bi2O2Se based highly selective and sensitive toxic non-condensable gas sensor. IEEE Trans. Nanotechnol. 21, 794–800 (2022).

    Article  Google Scholar 

  40. Xie, H. et al. Biodegradable Bi2O2Se quantum dots for photoacoustic imaging-guided cancer photothermal therapy. Small 16, e1905208 (2020).

    Article  Google Scholar 

  41. Dennard, R. H. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circuit 9, 256–268 (1974).

    Article  Google Scholar 

  42. Frank, D. J. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001).

    Article  Google Scholar 

  43. Bohr, M. A 30 year retrospective on Dennard’s MOSFET scaling paper. IEEE SSCS Newsl. 12, 11–13 (2007).

    Google Scholar 

  44. De, V. & Borkar, S. Technology and design challenges for low power and high performance. In Proc. 1999 International Symposium on Low Power Electronics and Design 163–168 (1999).

  45. Ferain, I., Colinge, C. A. & Colinge, J. P. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011).

    Article  Google Scholar 

  46. Auth, C. P. & Plummer, J. D. Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s. IEEE Electron Device Lett. 18, 74–76 (1997).

    Article  Google Scholar 

  47. Zhuo, F. et al. Modifying the power and performance of 2-dimensional MoS2 field effect transistors. Research 6, 0057 (2023).

    Article  Google Scholar 

  48. James, D. High-k/metal gates in the 2010s. In 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) 431–438 (2014).

  49. Duvvury, C. A guide to short-channel effects in MOSFETs. IEEE Circuits Devices 2, 6–10 (1986).

    Article  Google Scholar 

  50. Das, R. R., Rajalekshmi, T. R. & James, A. FinFET to GAA MBCFET: a review and insights. IEEE Access 12, 50556–50577 (2024).

    Article  Google Scholar 

  51. Jain, P. U. & Tomar, V. K. FinFET technology: as a promising alternatives for conventional MOSFET technology. In International Conference on Emerging Smart Computing and Informatics (ESCI) 43–47 (2020).

  52. Theis, T. N. & Wong, H. S. P. The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19, 41–50 (2017).

    Article  Google Scholar 

  53. Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  Google Scholar 

  54. Jena, D. Tunneling transistors based on graphene and 2-D crystals. Proc. IEEE 101, 1585–1602 (2013).

    Article  Google Scholar 

  55. Sakaki, H., Noda, T., Hirakawa, K., Tanaka, M. & Matsusue, T. Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 51, 1934–1936 (1987).

    Article  Google Scholar 

  56. Wang, S., Liu, X. & Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 34, 2106886 (2022).

    Article  Google Scholar 

  57. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Article  Google Scholar 

  58. Chang, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 37, 2108017 (2021).

    Article  Google Scholar 

  59. Kim, K. S. et al. The future of two-dimensional semiconductors beyond Moore’s law. Nat. Nanotechnol. 19, 895–906 (2024).

    Article  Google Scholar 

  60. Penumatcha, A. et al. High mobility TMD NMOS and PMOS transistors and GAA architecture for ultimate CMOS scaling. IEEE IEDM 1–4 (2023).

  61. Dorow, C. J. et al. Gate length scaling beyond Si: mono-layer 2D channel FETs robust to short channel effects. IEEE IEDM 7.5.1–7.5.4 (2022).

  62. Schram, T., Sutar, S., Radu, I. & Asselberghs, I. Challenges of wafer-scale integration of 2D semiconductors for high-performance transistor circuits. Adv. Mater. 34, 2109796 (2022).

    Article  Google Scholar 

  63. Smets, Q. et al. Extreme scaling enabled by MX2 transistors: variability challenges (invited). In Silicon Nanoelectronics Workshop (SNW) 1–2 (2021).

  64. Li, M. Y. et al. Wafer-scale Bi-assisted semi-auto dry transfer and fabrication of high-performance monolayer CVD WS2 transistor. In IEEE Symposium on VLSI Technology and Circuits 290–291 (2022).

  65. Hung, T. Y. T. et al. pMOSFET with CVD-grown 2D semiconductor channel enabled by ultra-thin and fab-compatible spacer doping. IEEE IEDM 7.3.1–7.3.4 (2022).

  66. Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).

    Article  Google Scholar 

  67. Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    Article  Google Scholar 

  68. Liu, J., Xia, F., Xiao, D., Garcia de Abajo, F. J. & Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020).

    Article  Google Scholar 

  69. Neumaier, D., Pindl, S. & Lemme, M. C. Integrating graphene into semiconductor fabrication lines. Nat. Mater. 18, 525–529 (2019).

    Article  Google Scholar 

  70. Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).

    Article  Google Scholar 

  71. Lin, X., Yang, W., Wang, K. L. & Zhao, W. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019).

    Article  Google Scholar 

  72. Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015).

    Article  Google Scholar 

  73. Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    Article  Google Scholar 

  74. Huang, X., Liu, C. & Zhou, P. 2D semiconductors for specific electronic applications: from device to system. npj 2D Mater. Appl. 6, 51 (2022).

    Article  Google Scholar 

  75. Rahman, A., Jing, G., Datta, S. & Lundstrom, M. S. Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50, 1853–1864 (2003).

    Article  Google Scholar 

  76. Natori, K. Ballistic transistors entrance to nanoscale electronics. In Proc. 7th International Conference Solid-State and Integrated Circuits Technology, 1, 247–250 (2004).

    Google Scholar 

  77. Timp, G. et al. The ballistic nano-transistor. In International Electron Devices Meeting, Technical Digest (99CH36318) 55–58 (1999).

  78. Natori, K. Ballistic metal–oxide–semiconductor field effect transistor. J. Appl. Phys. 76, 4879–4890 (1994).

    Article  Google Scholar 

  79. Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    Article  Google Scholar 

  80. Cao, W., Kang, J., Sarkar, D., Liu, W. & Banerjee, K. 2D semiconductor FETs — projections and design for sub-10 nm VLSI. IEEE Trans. Electron Devices 62, 3459–3469 (2015).

    Article  Google Scholar 

  81. Agarwal, T. et al. Benchmarking of MoS2 FETs with multigate Si-FET options for 5 nm and beyond. IEEE Trans. Electron Devices 62, 4051–4056 (2015).

    Article  Google Scholar 

  82. Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

    Article  Google Scholar 

  83. Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).

    Article  Google Scholar 

  84. Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).

    Article  Google Scholar 

  85. Li, S.-L. et al. Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett. 13, 3546–3552 (2013).

    Article  Google Scholar 

  86. Yu, Z. et al. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 27, 1604093 (2017).

    Article  Google Scholar 

  87. Xu, Y. et al. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater. 22, 1078–1084 (2023).

    Article  Google Scholar 

  88. Lu, Z. et al. Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration. Nat. Commun. 14, 2340 (2023).

    Article  Google Scholar 

  89. Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    Article  Google Scholar 

  90. Xia, F., Wang, H., Hwang, J. C. M., Neto, A. H. C. & Yang, L. Black phosphorus and its isoelectronic materials. Nat. Rev. Phys. 1, 306–317 (2019).

    Article  Google Scholar 

  91. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    Article  Google Scholar 

  92. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  Google Scholar 

  93. Yang, P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14, 5036–5045 (2020).

    Article  Google Scholar 

  94. Liu, L. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368, 850–856 (2020).

    Article  Google Scholar 

  95. Liang, Y. et al. Molecular beam epitaxy and electronic structure of atomically thin oxyselenide films. Adv. Mater. 31, 1901964 (2019).

    Article  Google Scholar 

  96. Ding, X. et al. Bi2O2Se: a rising star for semiconductor devices. Matter 5, 4274–4314 (2022).

    Article  Google Scholar 

  97. Li, T. & Peng, H. 2D Bi2O2Se: an emerging material platform for the next-generation electronic industry. Acc. Mater. Res. 2, 842–853 (2021).

    Article  Google Scholar 

  98. Chen, W. et al. Preparation, properties, and electronic applications of 2D Bi2O2Se. Adv. Powder Mater. 2, 100080 (2023).

    Article  Google Scholar 

  99. Wei, Q. et al. Quasi-two-dimensional Se-terminated bismuth oxychalcogenide (Bi2O2Se). ACS Nano 13, 13439–13444 (2019).

    Article  Google Scholar 

  100. Zhou, X. et al. Step-climbing epitaxy of layered materials with giant out-of-plane lattice mismatch. Adv. Mater. 34, 2202754 (2022).

    Article  Google Scholar 

  101. Zhao, K. et al. Bi2O2Se nanowires presenting high mobility and strong spin–orbit coupling. Appl. Phys. Lett. 121, 212104 (2022).

    Article  Google Scholar 

  102. Meng, M. et al. Strong spin–orbit interaction and magnetotransport in semiconductor Bi2O2Se nanoplates. Nanoscale 10, 2704–2710 (2018).

    Article  Google Scholar 

  103. Meng, M. et al. Universal conductance fluctuations and phase-coherent transport in a semiconductor Bi2O2Se nanoplate with strong spin–orbit interaction. Nanoscale 11, 10622–10628 (2019).

    Article  Google Scholar 

  104. Wu, M. & Zeng, X. C. Bismuth oxychalcogenides: a new class of ferroelectric/ferroelastic materials with ultra high mobility. Nano Lett. 17, 6309–6314 (2017).

    Article  Google Scholar 

  105. Wang, J. et al. Even-integer quantum Hall effect in an oxide caused by a hidden Rashba effect. Nat. Nanotechnol. 19, 1452–1459 (2024).

    Article  Google Scholar 

  106. Tu, T. et al. Uniform high-k amorphous native oxide synthesized by oxygen plasma for top-gated transistors. Nano Lett. 20, 7469–7475 (2020).

    Article  Google Scholar 

  107. Skotnicki, T. & Boeuf, F. How can high mobility channel materials boost or degrade performance in advanced CMOS. In IEEE Symposium on VLSI Technology and Circuits 153–154 (2010).

  108. Koba, S. et al. Channel length scaling limits of III–V channel MOSFETs governed by source-drain direct tunneling. Jpn. J. Appl. Phys. 53, 04EC10 (2014).

    Article  Google Scholar 

  109. Zhu, Z., Yao, X., Zhao, S., Lin, X. & Li, W. Giant modulation of the electron mobility in semiconductor Bi2O2Se via incipient ferroelectric phase transition. J. Am. Chem. Soc. 144, 4541–4549 (2022).

    Article  Google Scholar 

  110. Quhe, R. et al. Sub-10 nm two-dimensional transistors: theory and experiment. Phys. Rep. 938, 1–72 (2021).

    Article  Google Scholar 

  111. Quhe, R. et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale 11, 532–540 (2019).

    Article  Google Scholar 

  112. Yu, M., Tan, C., Gao, X., Tang, J. & Peng, H. Chemical vapor deposition growth of high-mobility 2D semiconductor Bi2O2Se: controllability and material quality. Acta Phys. Chim. Sin. 39, 2306043 (2023).

    Article  Google Scholar 

  113. Tan, C. W. et al. Strain-free layered semiconductors for 2D transistors with on-state current density exceeding 1.3 mA μm−1. Nano Lett. 22, 3770–3776 (2022).

    Article  Google Scholar 

  114. Yang, X. et al. High mobility two-dimensional bismuth oxyselenide single crystals with large grain size grown by reverse-flow chemical vapor deposition. ACS Appl. Mater. Interfaces 13, 49153–49162 (2021).

    Article  Google Scholar 

  115. Hong, C. et al. Inclined ultrathin Bi2O2Se films: a building block for functional van der Waals heterostructures. ACS Nano 14, 16803–16812 (2020).

    Article  Google Scholar 

  116. Khan, U. et al. Controlled vapor–solid deposition of millimeter‐size single crystal 2D Bi2O2Se for high‐performance phototransistors. Adv. Funct. Mater. 29, 1807979 (2019).

    Article  Google Scholar 

  117. Khan, U. et al. Salt-assisted low-temperature growth of 2D Bi2O2Se with controlled thickness for electronics. Small 19, 2206648 (2023).

    Article  Google Scholar 

  118. Zhang, C. et al. High-mobility flexible oxyselenide thin-film transistors prepared by a solution-assisted method. J. Am. Chem. Soc. 142, 2726–2731 (2020).

    Article  Google Scholar 

  119. Yang, J. et al. Exploration on the growth of Bi2O2Se films and nanosheet by an ALD-assisted CVD method. J. Mater. Sci. Mater. Electron. 34, 788 (2023).

    Article  Google Scholar 

  120. Kim, T. S. et al. Gas-phase alkali metal-assisted MOCVD growth of 2D transition metal dichalcogenides for large-scale precise nucleation control. Small 18, 2106368 (2022).

    Article  Google Scholar 

  121. Song, Y. et al. Epitaxial growth and characterization of high quality Bi2O2Se thin films on SrTiO3 substrates by pulsed laser deposition. Nanotechnology 31, 165704 (2020).

    Article  Google Scholar 

  122. Dang, L.-Y. et al. Organic ion template-guided solution growth of ultrathin bismuth oxyselenide with tunable electronic properties for optoelectronic applications. Adv. Funct. Mater. 32, 2201020 (2022).

    Article  Google Scholar 

  123. Li, M.-Q. et al. Bismuth oxychalcogenide nanosheet: facile synthesis, characterization, and photodetector application. Adv. Mater. Technol. 5, 2000180 (2020).

    Article  Google Scholar 

  124. Fu, H., Wu, J., Peng, H. & Yan, B. Self-modulation doping effect in the high-mobility layered semiconductor Bi2O2Se. Phys. Rev. B 97, 241203 (2018).

    Article  Google Scholar 

  125. Wu, J. et al. Low residual carrier concentration and high mobility in 2D semiconducting Bi2O2Se. Nano Lett. 19, 197–202 (2019).

    Article  Google Scholar 

  126. Wang, T. et al. Highly insulating phase of Bi2O2Se thin films with high electronic performance. Nano Res. 16, 3224–3230 (2022).

    Article  Google Scholar 

  127. Wei, Q. et al. Physics of intrinsic point defects in bismuth oxychalcogenides: a first-principles investigation. J. Appl. Phys. 124, 055701 (2018).

    Article  Google Scholar 

  128. Li, H. et al. Native point defects of semiconducting layered Bi2O2Se. Sci. Rep. 8, 10920 (2018).

    Article  Google Scholar 

  129. Wu, Z. et al. Seed-induced vertical growth of 2D Bi2O2Se nanoplates by chemical vapor transport. Adv. Funct. Mater. 29, 1906639 (2019).

    Article  Google Scholar 

  130. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  Google Scholar 

  131. Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  Google Scholar 

  132. Deng, B. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11, 12337–12345 (2017).

    Article  Google Scholar 

  133. Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    Article  Google Scholar 

  134. Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article  Google Scholar 

  135. Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).

    Article  Google Scholar 

  136. Atalla, M. M., Tannenbaum, E. & Scheibner, E. J. Stabilization of silicon surfaces by thermally grown oxides. Bell Syst. Tech. 38, 749–783 (1959).

    Article  Google Scholar 

  137. Pillarisetty, R. Academic and industry research progress in germanium nanodevices. Nature 479, 324–328 (2011).

    Article  Google Scholar 

  138. Zhang, H. et al. Programmable interfacial band configuration in WS2/Bi2O2Se heterojunctions. ACS Nano 18, 16832–16841 (2024).

    Article  Google Scholar 

  139. Zhao, Y. et al. Scalable layer-controlled oxidation of Bi2O2Se for self-rectifying memristor arrays with sub-pA sneak currents. Adv. Mater. 36, 2406608 (2024).

    Article  Google Scholar 

  140. Davoudi, M. R. et al. Multi-scale modeling of transistors based on the 2D semiconductor Bi2O2Se. In International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) 49–52 (2023).

  141. Knobloch, T. et al. Modeling the performance and reliability of two-dimensional semiconductor transistors. IEEE IEDM 1–4 (2023).

  142. Zhang, J. & Li, H. Bi2O2Se:Bi2O5Se high-K stack as a 2D analog of Si:SiO2: a first-principles study. Phys. Stat. Sol. Rapid Res. Lett. 15, 2000465 (2021).

    Google Scholar 

  143. Park, H. et al. Direct growth of Bi2SeO5 thin films for high-k dielectrics via atomic layer deposition. ACS Nano 18, 22071–22079 (2024).

    Article  Google Scholar 

  144. Liu, L. N., Tang, W. M. & Lai, P. T. Advances in La-based high-k dielectrics for MOS applications. Coatings 9, 217 (2019).

    Article  Google Scholar 

  145. Lu, C. A. et al. Characterizing and reducing the layout dependent effect and gate resistance to enable multiple-Vt scaling for a 3 nm CMOS technology. In IEEE Symposium on VLSI Technology and Circuits 1–2 (2023).

  146. Razavieh, A., Zeitzoff, P. & Nowak, E. J. Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Trans. Nanotechnol. 18, 999–1004 (2019).

    Article  Google Scholar 

  147. Sudarsanan, A., Venkateswarlu, S. & Nayak, K. Impact of fin line edge roughness and metal gate granularity on variability of 10-nm node SOI n-FinFET. IEEE Trans. Electron Devices 66, 4646–4652 (2019).

    Article  Google Scholar 

  148. Liu, C.-C. et al. Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond. Nat. Electron. 1, 562–569 (2018).

    Article  Google Scholar 

  149. Moroz, V. & Bomholt, L. Addressing LER through atomistic self-assembly. Proc. SPIE 8323, 83231Z (2012).

    Article  Google Scholar 

  150. Mehrotra, S. R., Paul, A., Cho, J., Povolotskyi, M. & Klimeck, G. Effect of fin tapering in nanoscale Si FinFETs. In 16th International Workshop on Computational Electronics 182–183 (2013).

  151. Mohsen, A., Harb, A., Deltimple, N. & Serhane, A. 28-nm UTBB FD-SOI vs. 22-nm tri-gate FinFET review: a designer guide — part I. Circuits Syst. 08, 93–110 (2017).

    Article  Google Scholar 

  152. Kurniawan, E. D., Yang, H., Lin, C.-C. & Wu, Y.-C. Effect of fin shape of tapered FinFETs on the device performance in 5-nm node CMOS technology. Microelectron. Reliab. 83, 254–259 (2018).

    Article  Google Scholar 

  153. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  Google Scholar 

  154. Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  Google Scholar 

  155. Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    Article  Google Scholar 

  156. Chung, Y. Y. et al. First demonstration of GAA monolayer-MoS2 nanosheet nFET with 410 μA μm ID 1 V VD at 40 nm gate length. IEEE IEDM 34.5.1–34.5.4 (2022).

  157. Guo, Y. et al. van der Waals polarity-engineered 3D integration of 2D complementary logic. Nature 630, 346–352 (2024).

    Article  Google Scholar 

  158. Bishop, M. D., Wong, H. S. P., Mitra, S. & Shulaker, M. M. Monolithic 3-D integration. IEEE Micro 39, 16–27 (2019).

    Article  Google Scholar 

  159. Lu, J.-Q. 3-D hyperintegration and packaging technologies for micro–nano systems. Proc. IEEE 97, 18–30 (2009).

    Article  Google Scholar 

  160. Kim, K. H., Karpov, I., Olsson, R. H., Olsson, I. I. I. & Jariwala, D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18, 422–441 (2023).

    Article  Google Scholar 

  161. Jiang, J., Parto, K., Cao, W. & Banerjee, K. Monolithic-3D integration with 2D materials: toward ultimate vertically-scaled 3D-ICs. IEEE S3S 1–3 (2018).

  162. Jiang, J., Parto, K., Cao, W. & Banerjee, K. Ultimate monolithic-3D integration with 2D materials: rationale, prospects, and challenges. IEEE J. Electron Devices Soc. 7, 878–887 (2019).

    Article  Google Scholar 

  163. Chen, Y. et al. Broadband Bi2O2Se photodetectors from infrared to terahertz. Adv. Funct. Mater. 31, 2009554 (2021).

    Article  Google Scholar 

  164. Chen, Y. F. et al. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection. Sci. Adv. 8, eabq1781 (2022).

    Article  Google Scholar 

  165. Wei, Y. et al. High-performance visible to near-infrared broadband Bi2O2Se nanoribbon photodetectors. Adv. Opt. Mater. 10, 2201396 (2022).

    Article  Google Scholar 

  166. Fu, Q. et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv. Mater. 31, 1804945 (2019).

    Article  Google Scholar 

  167. Fan, S. et al. Out-of-plane Bi2O2Se nanoflakes for sensitive gate-tunable phototransistors. Adv. Opt. Mater. 11, 2300740 (2023).

    Article  Google Scholar 

  168. Chitara, B., Limbu, T. B., Orlando, J. D., Vinodgopal, K. & Yan, F. 2-D Bi2O2Se nanosheets for nonenzymatic electrochemical detection of H2O2. IEEE Sens. Lett. 4, 1–4 (2020).

    Article  Google Scholar 

  169. Bae, J. K. et al. One-step synthesis of Bi2O2Se microstructures for trace oxygen gas sensor application. Sens. Actuator B Chem. 394, 134398 (2023).

    Article  Google Scholar 

  170. Cai, Q. et al. Sub-10 mK-resolution thermal-bolometric integrated FET-type sensors based on layered Bi2O2Se semiconductor nanosheets. IEEE IEDM 26.1.1–26.1.4 (2020).

  171. Wang, W. et al. Electrically switchable polarization in Bi2O2Se ferroelectric semiconductors. Adv. Mater. 35, 2210854 (2023).

    Article  Google Scholar 

  172. Ghosh, T. et al. Ultrathin free-standing nanosheets of Bi2O2Se: room temperature ferroelectricity in self-assembled charged layered heterostructure. Nano Lett. 19, 5703–5709 (2019).

    Article  Google Scholar 

  173. Wang, Z. et al. An ultrasensitive plasmonic sensor based on 2D ferroelectric Bi2O2Se. Small 19, 2303026 (2023).

    Article  Google Scholar 

  174. Sun, Y. et al. Intelligent cardiovascular disease diagnosis system combined piezoelectric nanogenerator based on 2D Bi2O2Se with deep learning technique. Nano Energy 128, 109878 (2024).

    Article  Google Scholar 

  175. Zhang, Z. et al. Truly concomitant and independently expressed short- and long-term plasticity in a Bi2O2Se-based three-terminal memristor. Adv. Mater. 31, 1805769 (2019).

    Article  Google Scholar 

  176. Liu, B. et al. Bi2O2Se-based true random number generator for security applications. ACS Nano 16, 6847–6857 (2022).

    Article  Google Scholar 

  177. Liu, B. et al. Bi2O2Se-based memristor-aided logic. ACS Appl. Mater. Interfaces 13, 15391–15398 (2021).

    Article  Google Scholar 

  178. Xia, Y. et al. 2D heterostructure of Bi2O2Se/Bi2SeOx nanosheet for resistive random access memory. Adv. Electron. Mater. 8, 2200126 (2022).

    Article  Google Scholar 

  179. Dong, Z. et al. Ultrafast and low-power 2D Bi2O2Se memristors for neuromorphic computing applications. Nano Lett. 23, 3842–3850 (2023).

    Article  Google Scholar 

  180. Verma, D., Chen, T.-C., Liu, B. & Lai, C.-S. Bi2O2Se-based CBRAM integrated artificial synapse. Heliyon 9, e22512 (2023).

    Article  Google Scholar 

  181. Wu, M. et al. Achieving ferroelectricity in a centrosymmetric high-performance semiconductor by strain engineering. Adv. Mater. 35, 2300450 (2023).

    Article  Google Scholar 

  182. Wu, P., Zhang, T., Zhu, J., Palacios, T. & Kong, J. 2D materials for logic device scaling. Nat. Mater. 23, 23–25 (2024).

    Article  Google Scholar 

  183. Jing, H. M. et al. Formation of Ruddlesden–Popper faults and their effect on the magnetic properties in Pr0.5Sr0.5CoO3 thin films. ACS Appl. Mater. Interfaces 10, 1428–1433 (2018).

    Article  Google Scholar 

  184. Thind, A. S. et al. Atomic structure and electrical activity of grain boundaries and Ruddlesden–Popper faults in cesium lead bromide perovskite. Adv. Mater. 31, e1805047 (2018).

    Article  Google Scholar 

  185. Wang, W. Y. et al. Atomic mapping of Ruddlesden–Popper faults in transparent conducting BaSnO3-based thin films. Sci. Rep. 5, 16097 (2015).

    Article  Google Scholar 

  186. Chen, W. et al. High-fidelity transfer of 2D Bi2O2Se and its mechanical properties. Adv. Funct. Mater. 30, 2004960 (2020).

    Article  Google Scholar 

  187. Wang, G. et al. Tunable contacts of Bi2O2Se nanosheets MSM photodetectors by metal‐assisted transfer approach for self‐powered near‐infrared photodetection. Small 20, 2306363 (2023).

    Article  Google Scholar 

  188. Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    Article  Google Scholar 

  189. Liu, G. et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat. Electron. 5, 275–280 (2022).

    Article  Google Scholar 

  190. Panasci, S. E., Schilirò, E., Roccaforte, F. & Giannazzo, F. Gold-assisted exfoliation of large-area monolayer transition metal dichalcogenides: from interface properties to device applications. Adv. Funct. Mater. 35, 2414532 (2024).

    Article  Google Scholar 

  191. Chou, A. S. et al. High-performance monolayer WSe2 p/n FETs via antimony–platinum modulated contact technology towards 2D CMOS electronics. IEEE IEDM 7.2.1–7.2.4 (2022).

  192. Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).

    Article  Google Scholar 

  193. Jiang, J. et al. Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors. Nat. Electron. 7, 545–556 (2024).

    Article  Google Scholar 

  194. Ting, C. Y. Silicide for contacts and interconnects. IEEE IEDM 110–113 (1984).

  195. Chuang, S. et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014).

    Article  Google Scholar 

  196. Meyer, J., Zilberberg, K., Riedl, T. & Kahn, A. Electronic structure of vanadium pentoxide: an efficient hole injector for organic electronic materials. J. Appl. Phys. 110, 033710 (2011).

    Article  Google Scholar 

  197. Gottesman, R. et al. Pure CuBi2O4 photoelectrodes with increased stability by rapid thermal processing of Bi2O3/CuO grown by pulsed laser deposition. Adv. Funct. Mater. 30, 1910832 (2020).

    Article  Google Scholar 

  198. Oropeza, F. E. et al. Electronic structure and interface energetics of CuBi2O4 photoelectrodes. J. Phys. Chem. C 124, 22416–22425 (2020).

    Article  Google Scholar 

  199. Li, J. et al. Chemical vapor deposition of quaternary 2D BiCuSeO p-type semiconductor with intrinsic degeneracy. Adv. Mater. 34, 2207796 (2022).

    Article  Google Scholar 

  200. Toriyama, M. Y., Qu, J., Snyder, G. J. & Gorai, P. Defect chemistry and doping of BiCuSeO. J. Mater. Chem. A 9, 20685–20694 (2021).

    Article  Google Scholar 

  201. Schor, D. TSMC N3, and challenges ahead. https://fuse.wikichip.org/ (2023).

  202. Lin, Y. et al. Scaling aligned carbon nanotube transistors to a sub-10 nm node. Nat. Electron. 6, 506–515 (2023).

    Article  Google Scholar 

  203. Lu, Y.-C., Huang, J.-K., Chao, K.-Y., Li, L.-J. & Hu, V. P.-H. Projected performance of Si- and 2D-material-based SRAM circuits ranging from 16 nm to 1 nm technology nodes. Nat. Nanotechnol. 19, 1066–1072 (2024).

    Article  Google Scholar 

  204. Li, H. et al. Recent experimental breakthroughs on 2D transistors: approaching the theoretical limit. Adv. Funct. Mater. 34, 2402474 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22432001 to H.P., 21920102004 to H.P., 22205011 to C.T. and 92164205 to C.T.), National Key Research & Development Program (2022YFA1204900 to H.P. and 2021YFA1202901 to C.T.), Beijing National Laboratory for Molecular Sciences (BNLMS-CXTD-202001 to H.P.) and the Tencent Foundation (The XPLORER PRIZE to H.P.).

Author information

Authors and Affiliations

Authors

Contributions

H.P. and C.T. provided innovative ideas for the article. C.T. researched data for this article. C.T., J.T., X.G. and H.P. co-wrote the manuscript. All authors provided suggestions for revisions and improvements to the Review.

Corresponding author

Correspondence to Hailin Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Tang, J., Gao, X. et al. 2D bismuth oxyselenide semiconductor for future electronics. Nat Rev Electr Eng (2025). https://doi.org/10.1038/s44287-025-00179-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44287-025-00179-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing