Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
The image on the cover shows the optoelectronic memristor cells to be fully integrated as a 128 × 8 multi-mode array for in-sensor computing applications.
Nanotechnology fosters energy-efficient devices that significantly boost on-chip performance for faster, more powerful AI, while also supporting dense integration of sensing and computing, reducing power consumption for advanced on-chip intelligence.
The lack of standardization in the protocols used to assess the physicochemical properties of the battery electrode surface layer has led to data dispersion and biased interpretation in the literature. Here I propose guidelines for investigating it properly — or at least to allow a fair comparison between literature data.
Colloidal liquid metals with gradient heterointerfaces offer a scalable and cost-effective solution to the persistent challenges of thermal management in high-performance electronics.
Reducing the duration of current pulses used to perform magnetization switching via spin–orbit torques in ferromagnetic and ferrimagnetic samples from microseconds to picoseconds leads to a continuous decrease in the energy consumption. These findings show that speed and efficiency of switching can be combined in various magnetic materials with different properties.
From a single library of siloxane-based lipidoids, siloxane-incorporated lipid nanoparticles (SiLNPs) involving minor alterations in lipid chemistry yield tissue-specific mRNA delivery to the liver, lung, or spleen. Upon enhanced intracellular delivery, these SiLNPs show clinical promise for protein replacement therapies, regenerative medicine, and CRISPR–Cas-based gene editing applications.
This Review presents a path to strategically overcoming extracellular vesicle heterogeneity and assay standardization, and offers solutions for realizing the clinical translation of extracellular vesicles for diagnostics and nanotherapeutics.
A sophisticated atomic force microscopy experiment enables a time-resolved tunnelling spectroscopy method that provides access to excited states of singles molecules. It quantifies the transition energies and can prepare a molecule in a specific excited state.
Experiments on spin–orbit torque magnetization switching over seven orders of magnitude in current pulse duration unveil a transition from non-coherent to coherent magnetization reversal as pulse duration is reduced and a reduction of energy consumption in the picosecond regime by an order of magnitude.
A biased atomic force microscopy tip can write complex in-plane polar topologies in a model ferroelectric Pb0.6Sr0.4TiO3 by means of a smart scan path design. Hence, on-demand generation, reading and erasing of tunable topologies is possible.
Terahertz absorption reduces the viscosity of the hydrodynamic electron fluid in graphene and thereby enables easier flow of electrons. This results in a drop in resistance within graphene constrictions under terahertz radiation, facilitating fast and sensitive terahertz detection.
This article presents a new method for coordinating iridium atoms with dimethylimidazole and cobalt–iron hydroxides. This enhances the oxygen evolution reaction and delivers high current densities with reduced precious metal use.
This work introduces a reaction system that enables the in situ conversion of H2O2 generated by 2e− ORR at the self-cleaning electrode surface into alkaline-earth metal peroxides. The solid oxidizer CaO2 exhibits comparable efficiency to H2O2 for tetracycline degradation.
Mesoporous MoS2 is proposed as an efficient electron transport layer in perovskite solar cells, achieving efficiencies >25% with over 2,000 h of stable operation.
This work presents a 7 × 7 crossbar array based on analog perovskite synapses and suggests that ion transport and interfacial barrier changes are more important than filaments with localized ions when constructing neuromorphic AI accelerators.
This study reports a fully integrated 128 × 8 optoelectronic memristor array with Si complementary metal–oxide–semiconductor circuits, featuring configurable multi-mode functionality. It demonstrates diversified in-sensor computing tasks and consumes 20 times less energy than GPUs.
This study introduces mechanochemistry-mediated colloidal liquid metals to enhance interface thermal transport in scalable electronic systems, offering an efficient cooling solution for thermal management in devices operating at kilowatt levels.
Here the authors present a syntrophic vesicle system for selective transport of adenine nucleotides between ATP-producing and ATP-consuming nanoreactors. The platform can sustain synthetic cells, bionanoreactors and life-like entities with ATP.
In this study, the authors present magnetoelectric nanodiscs that enable minimally invasive, remote magnetic neuromodulation with subsecond precision to drive reward and motor behaviours in genetically intact mice.
mRNA delivery through LNPs targeting specific organs holds great clinical potential, but it remains unclear how the structure of the lipidoids in the LNPs controls organ tropism. Here the authors direct in vivo delivery of siloxane-based LNPs via structural alteration of the ionizable structure of the constituting lipidoids.
Reducing scavenging of nanoparticles by the reticuloendothelial system and increasing their penetration through endothelial cell barriers would increase their clinical potential. Here the authors show that small nanoparticles targeting the caveolae of the lung microvascular endothelium are rapidly delivered to the lungs for precision imaging and targeting.
Nano-masking of the surface of tumour-derived extracellular vesicles blocks their immune-evasive action. This improves their phagocytosis by dendritic cells, leading to maturation of T-cell action and culminating in undampened anti-tumour immunity.
Phages are known as human-safe nanosized viruses that specifically infect bacteria. This work shows that non-lytic filamentous phages displaying a PD-L1-binding peptide and a melanoma-targeting peptide can efficiently target tumours and inhibit tumour growth by blocking the immune checkpoint.