Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and biochemical insight into a modular β-1,4-galactan synthase in plants

Abstract

Rhamnogalacturonan I (RGI) is a structurally complex pectic polysaccharide with a backbone of alternating rhamnose and galacturonic acid residues substituted with arabinan and galactan side chains. Galactan synthase 1 (GalS1) transfers galactose and arabinose to either extend or cap the β-1,4-galactan side chains of RGI, respectively. Here we report the structure of GalS1 from Populus trichocarpa, showing a modular protein consisting of an N-terminal ___domain that represents the founding member of a new family of carbohydrate-binding module, CBM95, and a C-terminal glycosyltransferase family 92 (GT92) catalytic ___domain that adopts a GT-A fold. GalS1 exists as a dimer in vitro, with stem domains interacting across the chains in a ‘handshake’ orientation that is essential for maintaining stability and activity. In addition to understanding the enzymatic mechanism of GalS1, we gained insight into the donor and acceptor substrate binding sites using deep evolutionary analysis, molecular simulations and biochemical studies. Combining all the results, a mechanism for GalS1 catalysis and a new model for pectic galactan side-chain addition are proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of GalS1 in RGI synthesis.
Fig. 2: The structure of GalS1 obtained by X-ray crystallography.
Fig. 3: The CBM95 ___domain is the founding member of a new CAZy family.
Fig. 4: Conserved pattern positions that distinguish the GT92 family.
Fig. 5: Insights from docking and molecular dynamics simulations.
Fig. 6: Proposed mechanism of galactan synthesis by GalS1.

Similar content being viewed by others

Data availability

The diffraction data and crystallographic models that support the findings of this study are available at the Protein Data Bank (https://www.rcsb.org/) under PDB accession codes 8D3T and 8D3Z for GalS1 in the apo form and the GalS1 bound to Mn2+, respectively. The SAXS data and model have been deposited and are available from the SIMPLE SAXS (https://simplescattering.com) database under the accession code XSMHXTBH. Other data that support the findings of this study and any computer code used herein are available from the corresponding author upon request. Source data are provided as part of this paper.

Code availability

The software used for analysis of the crystallographic data is freely available online or from the authors of each software package. Any computer code used herein is available from the corresponding author upon request.

References

  1. Carpita, N. C. Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1->4)-β-D-glycans. Plant Physiol. 155, 171–184 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Zabotina, O. A., Zhang, N. & Weerts, R. Polysaccharide biosynthesis: glycosyltransferases and their complexes. Front. Plant Sci. 12, 625307 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rini, J. M. & Esko J. D. in Essentials of Glycobiology 3rd edn (eds Varki, A. et al.) Ch. 6 (Cold Spring Harbor Laboratory Press, 2017).

  4. Na, L., Li, R. & Chen, X. Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Curr. Opin. Chem. Biol. 61, 81–95 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Liwanag, A. J. M. et al. Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a β-1,4-galactan β-1,4-galactosyltransferase. Plant Cell 24, 5024–5036 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ebert, B. et al. The three members of the Arabidopsis glycosyltransferase family 92 are functional β-1,4-galactan synthases. Plant Cell Physiol. 59, 2624–2636 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Atmodjo, M. A., Hao, Z. & Mohnen, D. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 64, 747–779 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Luis, A. S. & Martens, E. C. Interrogating gut bacterial genomes for discovery of novel carbohydrate degrading enzymes. Curr. Opin. Chem. Biol. 47, 126–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Laursen, T. et al. Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides. Plant J. 94, 340–351 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Harholt, J., Suttangkakul, A. & Vibe Scheller, H. Biosynthesis of pectin. Plant Physiol. 153, 384–395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gorshkova, T. et al. Aspen tension wood fibers contain β-(1—> 4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol. 169, 2048–2063 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ulvskov, P. et al. Biophysical consequences of remodeling the neutral side chains of rhamnogalacturonan I in tubers of transgenic potatoes. Planta 220, 609–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Obro, J. et al. Simultaneous in vivo truncation of pectic side chains. Transgenic Res. 18, 961–969 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Mellerowicz, E. J. & Gorshkova, T. A. Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J. Exp. Bot. 63, 551–565 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Zykwinska, A., Thibault, J.-F. & Ralet, M.-C. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged. J. Exp. Bot. 58, 1795–1802 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Lin, D., Lopez-Sanchez, P. & Gidley, M. J. Binding of arabinan or galactan during cellulose synthesis is extensive and reversible. Carbohydr. Polym. 126, 108–121 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. McCartney, L., Steele-King, C. G., Jordan, E. & Knox, J. P. Cell wall pectic (1->4)-beta-d-galactan marks the acceleration of cell elongation in the Arabidopsis seedling root meristem. Plant J. 33, 447–454 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. McCartney, L., Ormerod, A. P., Gidley, M. J. & Knox, J. P. Temporal and spatial regulation of pectic (1–>4)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J. 22, 105–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Klaassen, M. T. & Trindade, L. M. RG-I galactan side-chains are involved in the regulation of the water-binding capacity of potato cell walls. Carbohydr. Polym. 227, 115353 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Culbertson, A. T., Ehrlich, J. J., Choe, J. Y., Honzatko, R. B. & Zabotina, O. A. Structure of xyloglucan xylosyltransferase 1 reveals simple steric rules that define biological patterns of xyloglucan polymers. Proc. Natl Acad. Sci. USA 115, 6064–6069 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Urbanowicz, B. R. et al. Structural, mutagenic and in silico studies of xyloglucan fucosylation in Arabidopsis thaliana suggest a water-mediated mechanism. Plant J. 91, 931–949 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rocha, J. et al. Structure of Arabidopsis thaliana FUT1 reveals a variant of the GT-B class fold and provides insight into xyloglucan fucosylation. Plant Cell 28, 2352–2364 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith, P. J. et al. Enzymatic synthesis of artificial polysaccharides. ACS Sustain. Chem. Eng. 8, 11853–11871 (2020).

    Article  CAS  Google Scholar 

  25. Loqué, D., Scheller, H. V. & Pauly, M. Engineering of plant cell walls for enhanced biofuel production. Curr. Opin. Plant Biol. 25, 151–161 (2015).

    Article  PubMed  Google Scholar 

  26. Prabhakar, P. K. et al. in Methods in Cell Biology Vol. 160 (eds Anderson, C. T. et al.) 145–165 (Academic Press, 2020).

  27. Montanier, C. et al. Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules. J. Biol. Chem. 285, 31742–31754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cid, M. et al. Recognition of the helical structure of beta-1,4-galactan by a new family of carbohydrate-binding modules. J. Biol. Chem. 285, 35999–36009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Macquet, A., Ralet, M. C., Kronenberger, J., Marion-Poll, A. & North, H. M. In situ, chemical and macromolecular study of the composition of Arabidopsis thaliana seed coat mucilage. Plant Cell Physiol. 48, 984–999 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Haughn, G. & Western, T. Arabidopsis seed coat mucilage is a specialized cell wall that can be used as a model for genetic analysis of plant cell wall structure and function. Front. Plant Sci. 3, 00064 (2012).

    Article  CAS  Google Scholar 

  31. Venditto, I. et al. Complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition. Proc. Natl Acad. Sci. USA 113, 7136–7141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taujale, R. et al. Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases. eLife 9, e54532 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neuwald, A. F. A Bayesian sampler for optimization of protein ___domain hierarchies. J. Comput. Biol. 21, 269–286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sheikh, M. O. et al. Rapid screening of sugar-nucleotide donor specificities of putative glycosyltransferases. Glycobiology 27, 206–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Tsutsui, Y., Ramakrishnan, B. & Qasba, P. K. Crystal structures of β-1,4-galactosyltransferase 7 enzyme reveal conformational changes and substrate binding. J. Biol. Chem. 288, 31963–31970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Venkat, A. et al. Modularity of the hydrophobic core and evolution of functional diversity in fold A glycosyltransferases. J. Biol. Chem. 298, 102212 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prabhakar, P. K., Rao, K. K. & Balaji, P. V. The Cys78–Asn88 loop region of the Campylobacter jejuni CstII is essential for α2,3-sialyltransferase activity: analysis of the His85 mutants. J. Biochem. 156, 229–238 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Prabhakar, P. K., Srivastava, A., Rao, K. K. & Balaji, P. V. Monomerization alters the dynamics of the lid region in Campylobacter jejuni CstII: an MD simulation study. J. Biomol. Struct. Dyn. 34, 778–791 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Lunin, V. V. et al. Molecular mechanism of polysaccharide acetylation by the Arabidopsis xylan O-acetyltransferase XOAT1. Plant Cell 32, 2367–2382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, H.-T. et al. Rational enzyme design for controlled functionalization of acetylated xylan for cell-free polymer biosynthesis. Carbohydr. Polym. 273, 118564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, Y. et al. Roles of active site tryptophans in substrate binding and catalysis by α-1,3 galactosyltransferase. Glycobiology 14, 1295–1302 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. van der Veen, B. A. et al. Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin-glycosyltransferase. J. Biol. Chem. 276, 44557–44562 (2001).

    Article  PubMed  Google Scholar 

  43. Yang, T. et al. Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations. Nat. Commun. 10, 3214 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Abbott, D. W. & van Bueren, A. L. Using structure to inform carbohydrate binding module function. Curr. Opin. Struct. Biol. 28, 32–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Oka, N., Mori, S., Ikegaya, M., Park, E. Y. & Miyazaki, T. Crystal structure and sugar-binding ability of the C-terminal ___domain of N-acetylglucosaminyltransferase IV establish a new carbohydrate-binding module family. Glycobiology 32, 1153–1163 (2022).

    Article  PubMed  Google Scholar 

  46. Valdez, H. A. et al. Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Biochemistry 47, 3026–3032 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Noguchi, J. et al. Crystal structure of the branching enzyme I (BEI) from Oryza sativa L. with implications for catalysis and substrate binding. Glycobiology 21, 1108–1116 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Breton, C., Mucha, J. & Jeanneau, C. Structural and functional features of glycosyltransferases. Biochimie 83, 713–718 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Lowe, J. B. & Varki, A. in Essentials of Glycobiology (eds Varki, A. et al.) Ch. 17 (Cold Spring Harbor Laboratory Press, 1999).

  50. Kellokumpu, S., Hassinen, A. & Glumoff, T. Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Cell. Mol. Life Sci. 73, 305–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Boeggeman, E. E., Ramakrishnan, B. & Qasba, P. K. The N-terminal stem region of bovine and human β1,4-galactosyltransferase I increases the in vitro folding efficiency of their catalytic ___domain from inclusion bodies. Protein Expr. Purif. 30, 219–229 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Grabenhorst, E. & Conradt, H. S. The cytoplasmic, transmembrane, and stem regions of glycosyltransferases specify their in vivo functional sublocalization and stability in the Golgi. J. Biol. Chem. 274, 36107–36116 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Ramakrishnan, B., Balaji, P. V. & Qasba, P. K. Crystal structure of beta1,4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site. J. Mol. Biol. 318, 491–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Ramakrishnan, B., Boeggeman, E. & Qasba, P. K. Binding of N-acetylglucosamine (GlcNAc) β1–6-branched oligosaccharide acceptors to β4-galactosyltransferase I reveals a new ligand binding mode. J. Biol. Chem. 287, 28666–28674 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gámez-Arjona, F. M. & Mérida, Á. Interplay between the N-terminal domains of Arabidopsis starch synthase 3 determines the interaction of the enzyme with the starch granule. Front. Plant Sci. 12, 704161 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Christiansen, C. et al. The carbohydrate-binding module family 20–diversity, structure, and function. FEBS J. 276, 5006–5029 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Hedin, N., Velazquez, M. B., Barchiesi, J., Gomez-Casati, D. F. & Busi, M. V. CBM20CP, a novel functional protein of starch metabolism in green algae. Plant Mol. Biol. 108, 363–378 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, Y., Zhang, M., Kelly, A. R. & Cheng, A. The carbohydrate-binding ___domain of overexpressed STBD1 is important for its stability and protein-protein interactions. Biosci. Rep. 34, e00117 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cornil, I., Kerbel, R. S. & Dennis, J. W. Tumor cell surface beta 1-4-linked galactose binds to lectin(s) on microvascular endothelial cells and contributes to organ colonization. J. Cell Biol. 111, 773–781 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Raz, A. & Lotan, R. Endogenous galactoside-binding lectins: a new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev. 6, 433–452 (1987).

    Article  CAS  PubMed  Google Scholar 

  63. Moremen, K. W. et al. Expression system for structural and functional studies of human glycosylation enzymes. Nat. Chem. Biol. 14, 156–162 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Reeves, P. J., Callewaert, N., Contreras, R. & Khorana, H. G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl Acad. Sci. USA 99, 13419–13424 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pereira, J. H., McAndrew, R. P., Tomaleri, G. P. & Adams, P. D. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization. J. Appl. Crystallogr. 50, 1352–1358 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Winter, G., Lobley, C. M. & Prince, S. M. Decision making in xia2. Acta Crystallogr. D 69, 1260–1273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Terwilliger, T. C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D 65, 582–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Terwilliger, T. C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D 64, 61–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr .D 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  73. Classen, S. et al. Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source. J. Appl. Crystallogr. 46, 1–13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hura, G. L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Methods 6, 606–612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guinier, A. & Fournet, G. Small Angle Scattering of X-rays (John Wiley & Sons, 1955).

  76. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Schneidman-Duhovny, D., Hammel, M., Tainer, John, A. & Sali, A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 105, 962–974 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schneidman-Duhovny, D., Hammel, M. & Sali, A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38, W540–W544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Svergun, D. I., Petoukhov, M. V. & Koch, M. H. J. Determination of ___domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Volkov, V. V. & Svergun, D. I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 (2003).

    Article  CAS  Google Scholar 

  81. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Neuwald, A. F. Rapid detection, classification and accurate alignment of up to a million or more related protein sequences. Bioinformatics 25, 1869–1875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 61, 3891–3898 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R. & Klein, M. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  87. Huang, J. & MacKerell, A. D. Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Anandakrishnan, R., Aguilar, B. & Onufriev, A. V. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 40, W537–W541 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guvench, O., Hatcher, E., Venable, R. M., Pastor, R. W. & MacKerell, A. D. CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J. Chem. Theory Comput. 5, 2353–2370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tabachnikov, O. & Shoham, Y. Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. FEBS J. 280, 950–964 (2013).

    CAS  PubMed  Google Scholar 

  91. Goubet, F., Jackson, P., Deery, M. J. & Dupree, P. Polysaccharide analysis using carbohydrate gel electrophoresis: a method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal. Biochem. 300, 53–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Shao, W., Sharma, R., Clausen, M. H. & Scheller, H. V. Microscale thermophoresis as a powerful tool for screening glycosyltransferases involved in cell wall biosynthesis. Plant Methods 16, 99 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao, J. et al. Isolation of a lectin binding rhamnogalacturonan-I containing pectic polysaccharide from pumpkin. Carbohydr. Polym. 163, 330–336 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Notredame, C., Desmond, H. G. & Heringa, J. T-Coffee: a novel method for multiple sequence alignments. J. Mol. Biol. 302, 205–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–d444 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding to support B.R.U., P.K.P., V.S.B. and Y.J.B. was provided by the Center for Bioenergy Innovation (CBI), from the US Department of Energy Bioenergy Research Centers supported by the Office of Biological and Environmental Research in the DOE Office of Science. The work conducted by H.V.S., P.D.A., J.H.P. and M.H. at the Joint BioEnergy Institute is supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research under contract no. DE-AC02-05CH11231 between LBNL and the US Department of Energy. The Advanced Light Source is a Department of Energy Office of Science User Facility under Contract No. DE-AC02-05CH11231. The Berkeley Center for Structural Biology is supported in part by the Howard Hughes Medical Institute. The ALS-ENABLE beamlines are supported in part by the National Institutes of Health, National Institute of General Medical Sciences, grant P30 GM124169. Funding for the SIBYLS beamline at the Advanced Light Source was provided in part by the Offices of Science and Biological and Environmental Research, US Department of Energy, under Contract DE-AC02-05BH11231 and NIGMS grant P30 GM124169-01, ALS-ENABLE. Funding for N.K. and R.T. was provided by R35 GM139656 and R01 GM130915. Work by K.W.M., J.-Y.Y. and D.C. was supported by the US National Institutes of Health grants R01 GM130915 and P41GM103390 (to K.W.M.).

Author information

Authors and Affiliations

Authors

Contributions

P.K.P., J.H.P., R.T., W.S., V.S.B., N.K., M.H., P.D.A., H.V.S., D.C., J.-Y.Y. and B.R.U. designed and performed experiments, and analysed data. R.T., V.S.B. and N.K. performed computational simulations and machine learning studies. D.C. and J.-Y.Y. expressed proteins. K.W.M. and Y.J.B. designed experiments, analysed and interpreted data, and edited the paper. P.K.P., J.H.P., R.T., V.S.B., N.K., M.H., P.D.A., H.V.S. and B.R.U. wrote the paper. P.D.A., H.V.S. and B.R.U. conceived the project and B.R.U. led the project.

Corresponding author

Correspondence to Breeanna R. Urbanowicz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Neighbor-Joining consensus tree of GT92 peptide sequences from plants.

All full-length protein sequences were downloaded from Phytozome v1295 and generated using the software suite Geneious 2019.1. The position of PtGalS1 in the tree is highlighted with a gold star (). Plant species are abbreviated as follows: Selaginella moellendorffii (Sm), Solanum lycopersicum (Solyc), Populus trichocarpa (Potri), Physcomitrella patens (Pp), Panicum virgatum (Pavir), Oryza sativa (Os), Glycine max (Glymax), Eucalyptus grandis (EucGr), Daucus carota (DCAR), Citrus sinensis (Csi), Citrus clementina (Ciclev), Carica papaya (Cpap), Brachypodium distachyon (Bradi), and Arabidopsis thaliana (At).

Extended Data Fig. 2

Schematics of the native Populus trichocarpa GalS1 protein (gene loci Potri.005G258900) and the recombinant proteins used in the study.

Extended Data Fig. 3 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and SEC-MALS-SAXS analysis of GalS1, CBM95 and their variants.

SDS page of a, purified GalS1 WT protein and mutant variants. b, purified GalS1-CBM and its variants. 5 µg of protein was loaded in each well. See Extended Data Fig. 2 for construct information. Expression levels of soluble secreted sfGFP fusion proteins in the culture media were monitored by GFP fluorescence, indicated in Extended Data Tables S2 and S3. Each transfection experiment for mutant variants was performed at least once and two different SDS PAGE gels monitoring protein purification were generated. Data presented here are representative of the final purified product used in respective experiments. c, SEC-MALS-SAXS analysis of GalS1. SEC elution profile for the GalS1, along with masses calculated from MALS and radius of gyrations calculated from SAXS-frame collected across the SEC-elution peak. The masses confirm that untagged GalS1 is a dimer in solution (MW SAXS = 110 kDa, MW MALS = 119 kDa). Original uncropped images are provided in the Source Data.

Extended Data Fig. 4 Electron-density map of GalS1.

a, Stereo view of a sample of 2 |Fo | - |Fc | Фcalc electron density. b, Stereo view of Cα trace of the GalS1 as dimer.

Extended Data Fig. 5 Structural alignment of GalS1 with mammalian β-GlcNAc β-1,4-galactosyltransferases (β4GalTs).

The core catalytic ___domain of GalS1 (ivory) is well aligned with other galactosyltransferases (differently colored). GalS1 shows additional N- and C-terminal domains that are hypothesized to be necessary for binding the RG-I backbone to facilitate galactan chain elongation. GalS1 is aligned with a, Bos taurus Btβ4GalT1 (RMSD 4.7 over 104 residues, green);53 b, Homo sapiens Hsβ4GalT7 (RSMD 5.6 over 128 residues, magenta);35 c, Homo sapiens Hsβ4GalT1 (RMSD 4.2 over 104 residues, aqua);54 and d, Drosophila melanogaster Dmβ4GalT7 and (RMSD 5.7 over 136 residues, red)35.

Extended Data Fig. 6 Role of the conserved stem region on oligomerization and activity of GalS1.

Stem region interaction across monomers in dimeric GalS1. b, Dim plot 2D interaction map of residues that interact between stem regions in GalS1 homodimer. c, Comparison of GalT activity and d, AraT activity in WT and GalS1ΔSTEM variant. The values shown are mean values (bar) ± standard deviation (error bars) of a representative experiment for n = 3 technical replicates (red circles) and plotted using GraphPad Prism 9.5.0. e, Change in oligomerization state of GalS1ΔSTEM as compared to GalS1WT determined by SEC-MALS. f, Web logo showing conservation of residues beyond residue 96 in the predicted stem domains of plant GT92 proteins from Salix suchowensis, Populus alba, Populus trichocarpa, Jatropha curcas, Hevea brasiliensis, Ricinus communis, Manihot esculenta, Olea europaea, Carica papaya, Herrania umbratica, Cephalotus follicularis, Eucalyptus grandis, Cucurbita moschata, Camellia sinensis, Mangifera indica, Punica granatum, Pistacia vera, Durio zibethinus, Telopea speciosissima, Vitis riparia, Gossypium hirsutum, Quercus lobata, Quercus suber, Thalictrum thalictroides, Syzygium oleosum, Sesamum indicum, Gossypium australe, Morus notabilis, and Vitis vinifera. The sequence number on the X-axis refers to native GalS1 from Populus trichocarpa and Y-axis is in bits with error bars that indicate an approximate Bayesian 95% confidence interval. Thirty-three (n = 33) species of plants were examined in this experiment.

Extended Data Fig. 7 GT92 family conserved residues in GalS1 predicted to contribute to ligand specificity.

a, Highlighted residues studied in the current work. b, Hypervariable regions (HV), predicted to impart acceptor specificity to GalS1, and core-hydrophobic regions are shown in orange and yellow, respectively.

Extended Data Fig. 8 Donor specificity of GalS1 and β-1,4-galactotetraose acceptor dissociation constants (KD) of GalS1 WT and its variants.

a, Sugar-nucleotide specificity of GalS1. Reactions were carried out using 0.1 mM of UDP-substrate with 4 µg of the GalS1 enzyme in 50 mM HEPES, pH 7.5 in the absence of acceptor substrate. The values shown are mean values (bar) ± standard deviation (error bars) of a representative experiment for n = 3 technical replicates (red circles) and plotted using GraphPad Prism 9.5.0. b, Comparison of dissociation constants (KD) of PtGalS1 WT and its variants predicted for β-1,4-galactotetraose acceptor binding by microscale thermophoresis (MST). The values shown are mean values (filled circles) of the KD obtained after using KD fit model in the MO.Affinity Analysis software (NanoTemper Technologies) ± KD confidence (error bars). Error Bars represent standard deviation confidence (SD) values defined by the range where the KD falls with 68% of certainty, each point represents the mean of six sets of measurements (n = 6).

Extended Data Fig. 9 Comparison of galactosyltransferase activity of GalS1 WT and its variants by polysaccharide analysis using carbohydrate gel electrophoresis (PACE).

The results are representative of a single experiment.

Extended Data Fig. 10 Structural similarity between the experientially determined and AlphaFold2 predicted structures of GalS1.

a, Comparison of the X-ray structure of Populus trichocarpa GalS1 (97-495 residues; current study) determined in this work (in magenta) and the computationally predicted AlphaFold2 structure downloaded from the AlphaFold Protein Structure Database (AlphaFold id O22807;96,97 in green) of Arabidopsis thaliana GalS1 (97-496 residues). The root-mean-square deviation (RMSD; using Cα) of the aligned structures is 0.610 Å. b, Comparison of the X-ray structure of Populus trichocarpa GalS1 (97-495 residues; current study) determined in this work (in magenta) with the predicted AlphaFold2 structure of Populus trichocarpa GalS1 (97-495 residues) carried out in house using ColabFold98 (blue). The root-mean-square deviation (RMSD; using Cα) of the aligned structures is 0.593 Å.

Supplementary information

Supplementary Information

Supplementary Tables 14.

Reporting Summary

Source Data Extended Data Fig. 3

Unprocessed, uncropped SDS–PAGE gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhakar, P.K., Pereira, J.H., Taujale, R. et al. Structural and biochemical insight into a modular β-1,4-galactan synthase in plants. Nat. Plants 9, 486–500 (2023). https://doi.org/10.1038/s41477-023-01358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01358-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing