Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A control theory framework and in situ experimental platform for informing restoration of coral reefs

Abstract

Coral reefs provide crucial ecosystem services to over 1 billion people globally and this intense pressure is causing their decline. Despite substantial investments in coral restoration and gradual advancements in coral propagation techniques, efforts focused on these ecosystem engineers are not yet fully restoring the ecological functions necessary for thriving reefs. This Perspective provides a road map for how to apply control theory to coral reef restoration, leveraging the framework’s proven effectiveness for optimizing the growth of crops and expanding it to a complex ecosystem. An in situ mesocosm called Coral Reef Arks is used as a platform to test control interventions and refine the approach. Four field experiments using Coral Reef Arks show how control interventions are used to alter ecological and environmental conditions and guide reef state factors towards desired targets. The results from these tests identify control interventions and parameter relationships that are integrated into predictive models to determine the scale at which to intervene on natural reefs. By using real-time ecological feedback, this control-based framework offers a path to identify precise, adaptable interventions that go beyond static conservation methods, providing a dynamic approach to maintain and enhance reef function in the face of ongoing environmental changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Control theoretical approach applied to coral restoration.
Fig. 2: Four case studies demonstrating how control interventions are applied to Arks.
Fig. 3: A comprehensive framework for applying the control theory framework to coral reef restoration.
Fig. 4: Variable relationships extracted from coral reef models.

Similar content being viewed by others

References

  1. Souter, D. et al. (eds). Status of Coral Reefs of the World: 2020 Report (Global Coral Reef Monitoring Network and International Coral Reef Initiative, 2021).

  2. Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).

    Article  Google Scholar 

  3. Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).

    Article  Google Scholar 

  4. Gove, J. M. et al. Coral reefs benefit from reduced land–sea impacts under ocean warming. Nature 621, 536–542 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lange, I. D. et al. Coral restoration can drive rapid reef carbonate budget recovery. Curr. Biol. 34, 1341–1348 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Conserv. 236, 305–314 (2019).

    Article  Google Scholar 

  7. Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected areas improve reef resilience? Ann. Rev. Mar. Sci. 11, 307–334 (2019).

    Article  PubMed  Google Scholar 

  9. Boström-Einarsson, L. et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hughes, T. P., Baird, A. H., Morrison, T. H. & Torda, G. Principles for coral reef restoration in the Anthropocene. One Earth 6, 656–665 (2023).

    Article  Google Scholar 

  11. Alexander, S., Aronson, J., Whaley, O. & Lamb, D. The relationship between ecological restoration and the ecosystem services concept. Ecol. Soc. 21, 1 (2016).

    Article  Google Scholar 

  12. Suggett, D. J., Edwards, M., Cotton, D., Hein, M. & Camp, E. F. An integrative framework for sustainable coral reef restoration. One Earth 6, 666–681 (2023).

    Article  Google Scholar 

  13. Hein, M. et al. Mapping the Global Funding Landscape for Coral Reef Restoration (International Coral Reef Initiative, 2021).

  14. Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B 276, 3019–3025 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ladd, M. C., Burkepile, D. E. & Shantz, A. A. Near‐term impacts of coral restoration on target species, coral reef community structure, and ecological processes. Restor. Ecol. 27, 1166–1176 (2019).

    Article  Google Scholar 

  16. Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 16042 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Hein, M. Y. et al. Coral restoration effectiveness: multiregional snapshots of the long-term responses of coral assemblages to restoration. Diversity 12, 153 (2020).

    Article  Google Scholar 

  18. Suggett, D. J. et al. Restoration as a meaningful aid to ecological recovery of coral reefs. npj Ocean Sustain. 3, 20 (2024).

    Article  Google Scholar 

  19. Silbiger, N. J., Guadayol, Ò., Thomas, F. I. M. & Donahue, M. J. Reefs shift from net accretion to net erosion along a natural environmental gradient. Mar. Ecol. Prog. Ser. 515, 33–44 (2014).

    Article  Google Scholar 

  20. Hein, M. Y. et al. Perspectives on the use of coral reef restoration as a strategy to support and improve reef ecosystem services. Front. Mar. Sci. 8, 618303 (2021).

    Article  Google Scholar 

  21. Hatcher, B. G. Coral reef ecosystems: how much greater is the whole than the sum of the parts? Coral Reefs 16, S77–S91 (1997).

    Article  Google Scholar 

  22. Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 39666 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shaver, E. C. & Silliman, B. R. Time to cash in on positive interactions for coral restoration. PeerJ 5, e3499 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).

    Article  Google Scholar 

  25. Ladd, M. C. & Shantz, A. A. Trophic interactions in coral reef restoration: a review. Food Webs 24, e00149 (2020).

    Article  Google Scholar 

  26. Isabel, C. et al. Multiple trait approach to inform ecosystem service value of corals propagated for restoration on the Great Barrier Reef. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2030847/v1 (2023).

  27. Rogers, A. et al. Anticipative management for coral reef ecosystem services in the 21st century. Glob. Change Biol. 21, 504–514 (2015).

    Article  Google Scholar 

  28. Rinkevich, B. Ecological engineering approaches in coral reef restoration. ICES J. Mar. Sci. 78, 410–420 (2021).

    Article  Google Scholar 

  29. Coleman, M. A. et al. Restore or redefine: future trajectories for restoration. Front. Mar. Sci. 7, 237 (2020).

    Article  Google Scholar 

  30. Mcleod, E. et al. The future of resilience-based management in coral reef ecosystems. J. Environ. Manag. 233, 291–301 (2019).

    Article  Google Scholar 

  31. Leslie, H. M. & McLeod, K. L. Confronting the challenges of implementing marine ecosystem‐based management. Front. Ecol. Environ. 5, 540–548 (2007).

    Article  Google Scholar 

  32. Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).

    Article  Google Scholar 

  33. Harvey, B. J., Nash, K. L., Blanchard, J. L. & Edwards, D. P. Ecosystem‐based management of coral reefs under climate change. Ecol. Evol. 8, 6354–6368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lamont, T. A. C. et al. Multi-dimensional approaches to scaling up coral reef restoration. Mar. Policy 143, 105199 (2022).

    Article  Google Scholar 

  35. Weijerman, M., Fulton, E. A. & Brainard, R. E. Management strategy evaluation applied to coral reef ecosystems in support of ecosystem-based management. PLoS ONE 11, e0152577 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Heinimann, H. R. A concept in adaptive ecosystem management—an engineering perspective. Ecol. Manag. 259, 848–856 (2010).

    Article  Google Scholar 

  37. Loehle, C. Control theory and the management of ecosystems. J. Appl. Ecol. 43, 957–966 (2006).

    Article  Google Scholar 

  38. Ding, Y., Wang, L., Li, Y. & Li, D. Model predictive control and its application in agriculture: a review. Comput. Electr. Agric. 151, 104–117 (2018).

    Article  Google Scholar 

  39. Zhang, N., Wang, M. & Wang, N. Precision agriculture—a worldwide overview. Comput. Electr. Agric. 36, 113–132 (2002).

    Article  Google Scholar 

  40. Farnum, P. Precision forestry—finding the context. In Proc. 1st International Precision Forestry Cooperative Symposium 3–5 (Institute of Forest Resources, College of Forest Resources, Univ. Washington, 2001).

  41. Nocentini, S., Buttoud, G., Ciancio, O. & Corona, P. Managing forests in a changing world: the need for a systemic approach. A review. For. Syst. 26, eR01 (2017).

    Article  Google Scholar 

  42. Meza, M. E. M. & Bhaya, A. Control theory and the management of ecosystems: a threshold policy with hysteresis is robust. Appl. Math. Comput. 216, 3133–3145 (2010).

    Google Scholar 

  43. Walters, C. J. & Hilborn, R. Ecological optimization and adaptive management. Annu. Rev. Ecol. Syst. 9, 157–188 (1978).

    Article  Google Scholar 

  44. Holland, J. H. Studying complex adaptive systems. J. Syst. Sci. Complex 19, 1–8 (2006).

    Article  Google Scholar 

  45. Hill, J. I. & Durham, S. L. Input, signals, and control in ecosystems. In Proc. ICASSP ‘78. IEEE International Conference on Acoustics, Speech, and Signal Processing 391–397 (IEEE, 1978).

  46. Estes, J. A. & Palmisano, J. F. Sea otters: their role in structuring nearshore communities. Science 185, 1058–1060 (1974).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, J. G. et al. Behavioral responses across a mosaic of ecosystem states restructure a sea otter–urchin trophic cascade. Proc. Natl Acad. Sci. USA 118, e2012493118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kemp, W. M., Testa, J. M., Conley, D. J., Gilbert, D. & Hagy, J. D. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 6, 2985–3008 (2009).

    Article  CAS  Google Scholar 

  49. Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Shantz, A. A., Ladd, M. C. & Burkepile, D. E. Overfishing and the ecological impacts of extirpating large parrotfish from Caribbean coral reefs. Ecol. Monogr. 90, e01403 (2020).

    Article  Google Scholar 

  51. Baer, J. L. et al. Coral Reef Arks: an in situ mesocosm and toolkit for assembling reef communities. J. Vis. Exp. https://doi.org/10.3791/64778 (2023).

  52. Seraphim, M. J. et al. Interactions between coral restoration and fish assemblages: implications for reef management. J. Fish. Biol. 97, 633–655 (2020).

    Article  PubMed  Google Scholar 

  53. Silveira, C. B. et al. Viral predation pressure on coral reefs. BMC Biol. 21, 77 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Haas, A. F. et al. Can we measure beauty? Computational evaluation of coral reef aesthetics. PeerJ 3, e1390 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wegley Kelly, L. et al. Distinguishing the molecular diversity, nutrient content, and energetic potential of exometabolomes produced by macroalgae and reef-building corals. Proc. Natl Acad. Sci. USA 119, e2110283119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Heenan, A., Williams, G. J. & Williams, I. D. Natural variation in coral reef trophic structure across environmental gradients. Front. Ecol. Environ. 18, 69–75 (2020).

    Article  Google Scholar 

  57. Williams, G. J., Gove, J. M., Eynaud, Y., Zgliczynski, B. J. & Sandin, S. A. Local human impacts decouple natural biophysical relationships on Pacific coral reefs. Ecography 38, 751–761 (2015).

    Article  Google Scholar 

  58. Rinkevich, B. Conservation of coral reefs through active restoration measures: recent approaches and last decade progress. Environ. Sci. Technol. 39, 4333–4342 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Horoszowski-Fridman, Y. B., Brêthes, J.-C., Rahmani, N. & Rinkevich, B. Marine silviculture: incorporating ecosystem engineering properties into reef restoration acts. Ecol. Eng. 82, 201–213 (2015).

    Article  Google Scholar 

  60. Rinkevich, B. The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world. J. Mar. Sci. Eng. 7, 201 (2019).

    Article  Google Scholar 

  61. Lirman, D. et al. Propagation of the threatened staghorn coral Acropora cervicornis: methods to minimize the impacts of fragment collection and maximize production. Coral Reefs 29, 729–735 (2010).

    Article  Google Scholar 

  62. Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).

    Article  Google Scholar 

  63. Banaszak, A. T. et al. Applying coral breeding to reef restoration: best practices, knowledge gaps, and priority actions in a rapidly-evolving field. Restor. Ecol. 31, e13913 (2023).

    Article  Google Scholar 

  64. Biggs, B. C. Harnessing natural recovery processes to improve restoration outcomes: an experimental assessment of sponge-mediated coral reef restoration. PLoS ONE 8, e64945 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peixoto, R. S. et al. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Higgins, E., Metaxas, A. & Scheibling, R. E. A systematic review of artificial reefs as platforms for coral reef research and conservation. PLoS ONE 17, e0261964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shea, K. & Possingham, H. P. Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management. J. Appl. Ecol. 37, 77–86 (2000).

    Article  Google Scholar 

  69. Carilli, J. et al. Escaping the benthos with Coral Reef Arks: effects on coral translocation and fish biomass. PeerJ 12, e17640 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stigebrandt, A. & Gustafsson, B. G. Improvement of Baltic proper water quality using large-scale ecological engineering. Ambio 36, 280–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Conley, D. J. et al. Tackling hypoxia in the Baltic Sea: is engineering a solution? Environ. Sci. Technol. 43, 3407–3411 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Sawall, Y., Harris, M., Lebrato, M., Wall, M. & Feng, E. Y. Discrete pulses of cooler deep water can decelerate coral bleaching during thermal stress: implications for artificial upwelling during heat stress events. Front. Mar. Sci. 7, 720 (2020).

    Article  Google Scholar 

  73. Weathers, K. C., Ewing, H. A., Jones, C. G. & Strayer, D. L. in Fundamentals of Ecosystem Science 2nd edn (eds Weathers, K. C. et al.) 249–264 (Elsevier, 2021).

  74. Nelson, C. E., Wegley Kelly, L. & Haas, A. F. Microbial interactions with dissolved organic matter are central to coral reef ecosystem function and resilience. Ann. Rev. Mar. Sci. 15, 431–460 (2023).

    Article  PubMed  Google Scholar 

  75. Candy, A. S. et al. Small-scale oxygen distribution patterns in a coral reef. Front. Mar. Sci. 10, 1135686 (2023).

    Article  Google Scholar 

  76. Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

    Article  Google Scholar 

  77. Kaheman, K., Kutz, J. N. & Brunton, S. L. SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proc. R. Soc. A 476, 20200279 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Brunton, S. L., Proctor, J. L. & Kutz, J. N. Sparse identification of nonlinear dynamics with control (SINDYc). IFAC-PapersOnLine 49, 710–715 (2016).

    Article  Google Scholar 

  79. Champion, K. From Data to Dynamics: Discovering Governing Equations from Data. Doctoral dissertation, Univ. of Washington (2019).

  80. Baer, J. L. Coral Reef Arks: Molecular Mechanisms Underlying the Demise and Recovery of Coral Reef Ecosystems. Doctoral dissertation, San Diego State Univ. (2024).

  81. Pearman, J. K. et al. Cross-shelf investigation of coral reef cryptic benthic organisms reveals diversity patterns of the hidden majority. Sci. Rep. 8, 8090 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: what are we missing? PLoS ONE 6, e25026 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boisvert, T. S., Ruzicka, R. R., Schopmeyer, S. A. & Stallings, C. D. Restoration success limited by poor long-term survival after 9 years of Acropora cervicornis outplanting in the upper Florida Keys, United States. Restor. Ecol. 32, e14129 (2024).

    Article  Google Scholar 

  84. Glasl, B. et al. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome 7, 94 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resources Institute, 2011).

  86. Feng, E. Y., Sawall, Y., Wall, M., Lebrato, M. & Fu, Y. Modeling coral bleaching mitigation potential of water vertical translocation—an analogue to geoengineered artificial upwelling. Front. Mar. Sci. 7, 556192 (2020).

    Article  Google Scholar 

  87. Crabbe, M. J. C. Modelling effects of geoengineering options in response to climate change and global warming: implications for coral reefs. Comput. Biol. Chem. 33, 415–420 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Sovacool, B. K., Baum, C. M., Low, S. & Fritz, L. Coral reefs, cloud forests and radical climate interventions in Australia’s wet tropics and Great Barrier Reef. PLoS Clim. 2, e0000221 (2023).

    Article  Google Scholar 

  89. Nguyen, P. Q., Huang, X., Collins, D. S., Collins, J. J. & Lu, T. Harnessing synthetic biology to enhance ocean health. Trends Biotechnol. 41, 860–874 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Bradbury, R. H. & Seymour, R. M. Coral reef science and the new commons. Coral Reefs 28, 831–837 (2009).

    Article  Google Scholar 

  91. Hemming, V. et al. An introduction to decision science for conservation. Conserv. Biol. 36, e13868 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hanea, A. M., Hemming, V. & Nane, G. F. Uncertainty quantification with experts. Risk Anal. 42, 254–263 (2022).

    Article  PubMed  Google Scholar 

  93. Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 293–306 (2009).

    Article  Google Scholar 

  95. Burns, J. H. R., Delparte, D., Gates, R. D. & Takabayashi, M. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. PeerJ 3, e1077 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Carradec, Q. et al. A framework for in situ molecular characterization of coral holobionts using nanopore sequencing. Sci. Rep. 10, 15893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chang, J. J. M., Ip, Y. C. A., Bauman, A. G. & Huang, D. MinION-in-ARMS: nanopore sequencing to expedite barcoding of specimen-rich macrofaunal samples from autonomous reef monitoring structures. Front. Mar. Sci. 7, 448 (2020).

    Article  Google Scholar 

  98. Mills, M. S. et al. Assessment of the utility of underwater hyperspectral imaging for surveying and monitoring coral reef ecosystems. Sci. Rep. 13, 21103 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wilson, S. K., Graham, N. A. J., Holmes, T. H., MacNeil, M. A. & Ryan, N. M. Visual versus video methods for estimating reef fish biomass. Ecol. Indic. 85, 146–152 (2018).

    Article  Google Scholar 

  100. Kennedy, E. V. et al. Reef Cover, a coral reef classification for global habitat mapping from remote sensing. Sci. Data 8, 196 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Takeshita, Y. et al. Assessment of net community production and calcification of a coral reef using a boundary layer approach. J. Geophys. Res. Oceans 121, 5655–5671 (2016).

    Article  CAS  Google Scholar 

  102. Freeman, S. E., Freeman, L. A., Giorli, G. & Haas, A. F. Photosynthesis by marine algae produces sound, contributing to the daytime soundscape on coral reefs. PLoS ONE 13, e0201766 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gordon, T. A. C. et al. Habitat degradation negatively affects auditory settlement behavior of coral reef fishes. Proc. Natl Acad. Sci. USA 115, 5193–5198 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Crossland, C. J., Hatcher, B. G. & Smith, S. V. Role of coral reefs in global ocean production. Coral Reefs 10, 55–64 (1991).

    Article  Google Scholar 

  105. Alldredge, A. L., Carlson, C. A. & Carpenter, R. C. Sources of organic carbon to coral reef flats. Oceanography 26, 108–113 (2013).

    Article  Google Scholar 

  106. Odum, H. T. & Odum, E. P. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol. Monogr. 25, 291–320 (1955).

    Article  Google Scholar 

  107. Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Kleypas, J. et al. Designing a blueprint for coral reef survival. Biol. Conserv. 257, 109107 (2021).

    Article  Google Scholar 

  109. van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2, 747–762 (2021).

    Article  Google Scholar 

  111. Mongin, M., Baird, M. E., Lenton, A., Neill, C. & Akl, J. Reversing ocean acidification along the Great Barrier Reef using alkalinity injection. Environ. Res. Let. 16, 64068 (2021).

    Article  CAS  Google Scholar 

  112. Weijerman, M. et al. How models can support ecosystem-based management of coral reefs. Prog. Oceanogr. 138, 559–570 (2015).

    Article  Google Scholar 

  113. Pethybridge, H. R. et al. Calibrating process-based marine ecosystem models: an example case using Atlantis. Ecol. Model. 412, 108822 (2019).

    Article  Google Scholar 

  114. Hipsey, M. R. et al. A system of metrics for the assessment and improvement of aquatic ecosystem models. Environ. Mod. Softw. 128, 104697 (2020).

    Article  Google Scholar 

  115. Reis, V. Mdos et al. Carbonate production by benthic communities on shallow coralgal reefs of Abrolhos Bank, Brazil. PLoS ONE 11, e0154417 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Price, N. N., Martz, T. R., Brainard, R. E. & Smith, J. E. Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs. PLoS ONE 7, e43843 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vargas-Angel, B. et al. Baseline assessment of net calcium carbonate accretion rates on US Pacific reefs. PLoS ONE 10, e0142196 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Randi, C. B. et al. Calcium carbonate production in the southernmost subtropical Atlantic coral reef. Mar. Environ. Res. 172, 105490 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Lange, I. D., Perry, C. T. & Alvarez-Filip, L. Carbonate budgets as indicators of functional reef “health”: a critical review of data underpinning census-based methods and current knowledge gaps. Ecol. Indic. 110, 105857 (2020).

    Article  Google Scholar 

  120. Johnson, M. D., Price, N. N. & Smith, J. E. Calcification accretion units (CAUs): a standardized approach for quantifying recruitment and calcium carbonate accretion in marine habitats. Methods Ecol. Evol. 13, 1436–1446 (2022).

    Article  Google Scholar 

  121. Estrada-Saldívar, N., Jordán-Dalhgren, E., Rodríguez-Martínez, R. E., Perry, C. & Alvarez-Filip, L. Functional consequences of the long-term decline of reef-building corals in the Caribbean: evidence of across-reef functional convergence. R. Soc. Open Sci. 6, 190298 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Davis, K. L., Colefax, A. P., Tucker, J. P., Kelaher, B. P. & Santos, I. R. Global coral reef ecosystems exhibit declining calcification and increasing primary productivity. Commun. Earth Environ. 2, 105 (2021).

    Article  Google Scholar 

  123. Januchowski-Hartley, F. A., Graham, N. A. J., Wilson, S. K., Jennings, S. & Perry, C. T. Drivers and predictions of coral reef carbonate budget trajectories. Proc. R. Soc. B 284, 20162553 (2017).

    Article  Google Scholar 

  124. Sandin, S. A. et al. Baselines and degradation of coral reefs in the Northern Line Islands. PLoS ONE 3, e1548 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Newman, M. J. H., Paredes, G. A., Sala, E. & Jackson, J. B. C. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).

    Article  PubMed  Google Scholar 

  126. Edwards, C. B. et al. Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc. R. Soc. B 281, 20131835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Williams, I. D. et al. Differences in reef fish assemblages between populated and remote reefs spanning multiple archipelagos across the central and western Pacific. J. Mar. Sci. 2011, 826234 (2011).

    Google Scholar 

  128. Sandin, S. A., Sampayo, E. M. & Vermeij, M. J. A. Coral reef fish and benthic community structure of Bonaire and Curaçao, Netherlands Antilles. Caribb. J. Sci. 44, 137–144 (2008).

    Article  Google Scholar 

  129. Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).

    Article  PubMed  Google Scholar 

  130. Grafeld, S. et al. Divers’ willingness to pay for improved coral reef conditions in Guam: an untapped source of funding for management and conservation? Ecol. Econ. 128, 202–213 (2016).

    Article  Google Scholar 

  131. Marshall, N. et al. Identifying indicators of aesthetics in the Great Barrier Reef for the purposes of management. PLoS ONE 14, e0210196 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Uyarra, M. C., Watkinson, A. R. & Cote, I. M. Managing dive tourism for the sustainable use of coral reefs: validating diver perceptions of attractive site features. Environ. Manage. 43, 1–16 (2009).

    Article  PubMed  Google Scholar 

  133. Silveira, C. B. et al. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genomics 21, 126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Silveira, C. B. et al. Biophysical and physiological processes causing oxygen loss from coral reefs. eLife 8, e49114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wee, S. Y. C. et al. The role of in situ coral nurseries in supporting mobile invertebrate epifauna. J. Nat. Conserv 50, 125710 (2019).

    Article  Google Scholar 

  136. Duffy, J. E. Reefs need richness. Nat. Ecol. Evol. 3, 149–150 (2019).

    Article  PubMed  Google Scholar 

  137. Bellwood, D. R., Wainwright, P. C., Fulton, C. J. & Hoey, A. S. Functional versatility supports coral reef biodiversity. Proc. R. Soc. B 273, 101–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Díaz-Pérez, L. et al. Coral reef health indices versus the biological, ecological and functional diversity of fish and coral assemblages in the Caribbean Sea. PLoS ONE 11, e0161812 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Galand, P. E. et al. Diversity of the Pacific Ocean coral reef microbiome. Nat. Commun. 14, 3039 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ransome, E. et al. The importance of standardization for biodiversity comparisons: a case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo’orea coral reefs, French Polynesia. PLoS ONE 12, e0175066 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wegley Kelly, L. et al. Molecular commerce on coral reefs: using metabolomics to reveal biochemical exchanges underlying holobiont biology and the ecology of coastal ecosystems. Front. Mar. Sci. 8, 630799 (2021).

    Article  Google Scholar 

  142. Hartmann, A. C. et al. Meta-mass shift chemical profiling of metabolomes from coral reefs. Proc. Natl Acad. Sci. USA 114, 11685–11690 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cortés-Useche, C. et al. Capture, culture and release of postlarvae fishes: proof-of-concept as a tool approach to support reef management. Front. Mar. Sci. 8, 718526 (2021).

    Article  Google Scholar 

  144. Obolski, U., Hadany, L. & Abelson, A. Potential contribution of fish restocking to the recovery of deteriorated coral reefs: an alternative restoration method? PeerJ 4, e1732 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Manuel, O. S., Williams, S. M., Weil, E. & Cruz-Motta, J. J. Experimental evaluation of Diadema antillarum herbivory effects on benthic community assemblages. J. Exp. Mar. Biol. Ecol. 541, 151566 (2021).

    Article  Google Scholar 

  146. Abelson, A., Obolski, U., Regoniel, P. & Hadany, L. Restocking herbivorous fish populations as a social-ecological restoration tool in coral reefs. Front. Mar. Sci. 3, 138 (2016).

    Article  Google Scholar 

  147. Neilson, B. J., Wall, C. B., Mancini, F. T. & Gewecke, C. A. Herbivore biocontrol and manual removal successfully reduce invasive macroalgae on coral reefs. PeerJ 6, e5332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Maciá, S., Robinson, M. P. & Nalevanko, A. Experimental dispersal of recovering Diadema antillarum increases grazing intensity and reduces macroalgal abundance on a coral reef. Mar. Ecol. Prog. Ser. 348, 173–182 (2007).

    Article  Google Scholar 

  149. Nakamura, R. et al. Corals mass-cultured from eggs and transplanted as juveniles to their native, remote coral reef. Mar. Ecol. Prog. Ser. 436, 161–168 (2011).

    Article  Google Scholar 

  150. Chamberland, V. F. et al. New seeding approach reduces costs and time to outplant sexually propagated corals for reef restoration. Sci. Rep. 7, 18076 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Sellares-Blasco, R. I., Villalpando, M. F., Guendulain-García, S. D. & Croquer, A. Assisted coral reproduction in the Dominican Republic: a successful story to replicate in the Caribbean. Front. Mar. Sci. 8, 669505 (2021).

    Article  Google Scholar 

  152. Cruz, D. W. D. & Harrison, P. L. Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Sci. Rep. 7, 13985 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Quigley, K. M., Alvarez Roa, C., Beltran, V. H., Leggat, B. & Willis, B. L. Experimental evolution of the coral algal endosymbiont, Cladocopium goreaui: lessons learnt across a decade of stress experiments to enhance coral heat tolerance. Restor. Ecol. 29, e13342 (2021).

    Article  Google Scholar 

  154. Humanes, A. et al. An experimental framework for selectively breeding corals for assisted evolution. Front. Mar. Sci. 8, 626 (2021).

    Article  Google Scholar 

  155. Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Chan, W. Y., Peplow, L. M., Menéndez, P., Hoffmann, A. A. & van Oppen, M. J. H. Interspecific hybridization may provide novel opportunities for coral reef restoration. Front. Mar. Sci. 5, 160 (2018).

    Article  Google Scholar 

  157. Levin, R. A. et al. Engineering strategies to decode and enhance the genomes of coral symbionts. Front. Microbiol. 8, 1220 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).

    Article  Google Scholar 

  159. Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).

    Article  Google Scholar 

  160. Hoegh-Guldberg, O. et al. Ecology: assisted colonization and rapid climate change. Science 321, 345–346 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Knapp, I. S. S. et al. Coral micro-fragmentation assays for optimizing active reef restoration efforts. PeerJ 10, e13653 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Page, C. A., Muller, E. M. & Vaughan, D. E. Microfragmenting for the successful restoration of slow growing massive corals. Ecol. Eng. 123, 86–94 (2018).

    Article  Google Scholar 

  163. Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and western Atlantic. PeerJ 4, e2597 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ladd, M. C., Shantz, A. A., Nedimyer, K. & Burkepile, D. E. Density dependence drives habitat production and survivorship of Acropora cervicornis used for restoration on a Caribbean coral reef. Front. Mar. Sci. 3, 261 (2016).

    Article  Google Scholar 

  165. Kroon, F. J., Barneche, D. R. & Emslie, M. J. Fish predators control outbreaks of crown-of-thorns starfish. Nat. Commun. 12, 6986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Plagányi, É. E., Babcock, R. C., Rogers, J., Bonin, M. & Morello, E. B. Ecological analyses to inform management targets for the culling of crown-of-thorns starfish to prevent coral decline. Coral Reefs 39, 1483–1499 (2020).

    Article  Google Scholar 

  167. Fletcher, C. S., Bonin, M. C. & Westcott, D. A. An Ecologically-based Operational Strategy for COTS Control: Integrated Decision Making from the Site to the Regional Scale (Report to the NESP Tropical Water Quality Hub) (RRRC, 2020).

  168. Williams, D. E., Miller, M. W., Bright, A. J. & Cameron, C. M. Removal of corallivorous snails as a proactive tool for the conservation of acroporid corals. PeerJ 2, e680 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Rivera-Posada, J., Caballes, C. F. & Pratchett, M. S. Lethal doses of oxbile, peptones and thiosulfate-citrate-bile-sucrose agar (TCBS) for Acanthaster planci; exploring alternative population control options. Mar. Pollut. Bull. 75, 133–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Delgado, G. A. & Sharp, W. C. Capitalizing on an ecological process to aid coral reef ecosystem restoration: can gastropod trophodynamics enhance coral survival? Coral Reefs 39, 319–330 (2020).

    Article  Google Scholar 

  171. Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, 19–21 (2021).

    Article  Google Scholar 

  172. Epstein, H. E., Smith, H. A., Torda, G. & van Oppen, M. J. H. Microbiome engineering: enhancing climate resilience in corals. Front. Ecol. Environ. 17, 100–108 (2019).

    Article  Google Scholar 

  173. Cox, C. E. et al. Genetic testing reveals some mislabeling but general compliance with a ban on herbivorous fish harvesting in Belize. Conserv. Lett. 6, 132–140 (2013).

    Article  Google Scholar 

  174. Bozec, Y. M., O’Farrell, S., Bruggemann, J. H., Luckhurst, B. E. & Mumby, P. J. Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc. Natl Acad. Sci. USA 113, 4536–4541 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Muallil, R. N. et al. Effectiveness of small locally-managed marine protected areas for coral reef fisheries management in the Philippines. Ocean Coast. Manag. 179, 104831 (2019).

    Article  Google Scholar 

  176. Pikitch, E. K. et al. Ecosystem-based fishery management. Science 305, 346–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Mcclanahan, T. R., Graham, N. A. J., Macneil, M. A. & Cinner, J. E. Biomass-based targets and the management of multispecies coral reef fisheries. Conserv. Biol. 29, 409–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Champion, C., Suthers, I. M. & Smith, J. A. Zooplanktivory is a key process for fish production on a coastal artificial reef. Mar. Ecol. Prog. Ser. 541, 1–14 (2015).

    Article  CAS  Google Scholar 

  179. Enochs, I. C. Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion. Mar. Biol. 159, 709–722 (2012).

    Article  Google Scholar 

  180. Shafir, S., Van Rijn, J. & Rinkevich, B. A mid-water coral nursery. In Proc. 10th International Coral Reef Symposium, 1974–1979 (2006).

  181. Cabaitan, P. C., Gomez, E. D. & Aliño, P. M. Effects of coral transplantation and giant clam restocking on the structure of fish communities on degraded patch reefs. J. Exp. Mar. Biol. Ecol. 357, 85–98 (2008).

    Article  Google Scholar 

  182. Gordon, T. A. C. et al. Acoustic enrichment can enhance fish community development on degraded coral reef habitat. Nat. Commun. 10, 5414 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Vermeij, M. J. A., Marhaver, K. L., Huijbers, C. M., Nagelkerken, I. & Simpson, S. D. Coral larvae move toward reef sounds. PLoS ONE 5, e10660 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Simpson, S. D., Meekan, M. G., McCauley, R. D. & Jeffs, A. Attraction of settlement-stage coral reef fishes to reef noise. Mar. Ecol. Prog. Ser. 276, 263–268 (2004).

    Article  Google Scholar 

  185. Alldredge, A. L., Holbrook, S. J., Schmitt, R. J., Brooks, A. J. & Stewart, H. Skeletal growth of four scleractinian corals is not enhanced by in situ mesozooplankton enrichment. Mar. Ecol. Prog. Ser. 489, 143–153 (2013).

    Article  Google Scholar 

  186. McAfee, D. et al. Soundscape enrichment enhances recruitment and habitat building on new oyster reef restorations. J. Appl. Ecol. 60, 111–120 (2023).

    Article  Google Scholar 

  187. Lillis, A., Bohnenstiehl, D. W. R. & Eggleston, D. B. Soundscape manipulation enhances larval recruitment of a reef-building mollusk. PeerJ 3, e999 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Visser, P. M., Ibelings, B. W., Bormans, M. & Huisman, J. Artificial mixing to control cyanobacterial blooms: a review. Aquat. Ecol. 50, 423–441 (2016).

    Article  CAS  Google Scholar 

  189. Liu, S. et al. Review of artificial downwelling for mitigating hypoxia in coastal waters. Water 12, 2846 (2020).

    Article  CAS  Google Scholar 

  190. Pan, Y. W. et al. Research progress in artificial upwelling and its potential environmental effects. Sci. China Earth Sci. 59, 236–248 (2016).

    Article  Google Scholar 

  191. Zhang, C. et al. Eco-engineering approaches for ocean negative carbon emission. Sci. Bull. 67, 2564–2573 (2022).

    Article  CAS  Google Scholar 

  192. Shelton, A. J. III & Richmond, R. H. Watershed restoration as a tool for improving coral reef resilience against climate change and other human impacts. Estuar. Coast. Shelf Sci. 183, 430–437 (2016).

    Article  Google Scholar 

  193. Suárez‐Castro, A. F. et al. Global forest restoration opportunities to foster coral reef conservation. Glob. Change Biol. 27, 5238–5252 (2021).

    Article  Google Scholar 

  194. DeMartini, E. et al. Terrigenous sediment impact on coral recruitment and growth affects the use of coral habitat by recruit parrotfishes (F. Scaridae). J. Coast. Conserv. 17, 417–429 (2013).

    Article  Google Scholar 

  195. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    Article  CAS  PubMed  Google Scholar 

  196. Jiao, N., Tang, K., Cai, H. & Mao, Y. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat. Rev. Microbiol. 9, 75 (2011).

    Article  CAS  Google Scholar 

  197. Feng, E. Y., Keller, D. P., Koeve, W. & Oschlies, A. Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification? Environ. Res. Lett. 11, 74008 (2016).

    Article  Google Scholar 

  198. Renforth, P. & Henderson, G. Assessing ocean alkalinity for carbon sequestration. Rev. Geophys. 55, 636–674 (2017).

    Article  Google Scholar 

  199. Albright, R. et al. Reversal of ocean acidification enhances net coral reef calcification. Nature 531, 362–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Comeau, S., Edmunds, P. J., Lantz, C. A. & Carpenter, R. C. Water flow modulates the response of coral reef communities to ocean acidification. Sci. Rep. 4, 6681 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Reguero, B. G., Beck, M. W., Agostini, V. N., Kramer, P. & Hancock, B. Coral reefs for coastal protection: a new methodological approach and engineering case study in Grenada. J. Environ. Manag. 210, 146–161 (2018).

    Article  Google Scholar 

  202. Brathwaite, A., Clua, E., Roach, R. & Pascal, N. Coral reef restoration for coastal protection: crafting technical and financial solutions. J. Environ. Manag. 310, 114718 (2022).

    Article  Google Scholar 

  203. Amar, K. O. & Rinkevich, B. A floating mid-water coral nursery as larval dispersion hub: testing an idea. Mar. Biol. 151, 713–718 (2007).

    Article  Google Scholar 

  204. Albert, J. A. et al. The contribution of nearshore fish aggregating devices (FADs) to food security and livelihoods in Solomon Islands. PLoS ONE 9, e115386 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Buckley, R. M., Itano, D. G. & Buckley, T. W. Fish aggregation device (FAD) enhancement of offshore fisheries in American Samoa. Bull. Mar. Sci. 44, 942–949 (1989).

    Google Scholar 

  206. Bell, J. D. et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. Clim. Change 3, 591–599 (2013).

    Article  Google Scholar 

  207. Bell, J. D. et al. Optimising the use of nearshore fish aggregating devices for food security in the Pacific Islands. Mar. Policy 56, 98–105 (2015).

    Article  Google Scholar 

  208. Levy, N. et al. Emerging 3D technologies for future reformation of coral reefs: enhancing biodiversity using biomimetic structures based on designs by nature. Sci. Total Environ. 830, 154749 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Levenstein, M. A. et al. Engineered substrates reveal species-specific inorganic cues for coral larval settlement. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2021-r1gxj (2021).

  210. Leonard, C. et al. Performance of innovative materials as recruitment substrates for coral restoration. Restor. Ecol. 30, e13625 (2022).

    Article  Google Scholar 

  211. Berman, O. et al. Design and application of a novel 3D printing method for bio-inspired artificial reefs. Ecol. Eng. 188, 106892 (2023).

    Article  Google Scholar 

  212. Yanovski, R. & Abelson, A. Structural complexity enhancement as a potential coral-reef restoration tool. Ecol. Eng. 132, 87–93 (2019).

    Article  Google Scholar 

  213. Williams, S. L. et al. Large-scale coral reef rehabilitation after blast fishing in Indonesia. Restor. Ecol. 27, 447–456 (2019).

    Article  Google Scholar 

  214. Fox, H. E., Mous, P. J., Pet, J. S., Muljadi, A. H. & Caldwell, R. L. Experimental assessment of coral reef rehabilitation following blast fishing. Conserv. Biol. 19, 98–107 (2005).

    Article  Google Scholar 

  215. Fox, H. E. et al. Rebuilding coral reefs: success (and failure) 16 years after low-cost, low-tech restoration. Restor. Ecol. 27, 862–869 (2019).

    Article  Google Scholar 

  216. Jayanthi, M. et al. Perforated trapezoidal artificial reefs can augment the benefits of restoration of an island and its marine ecosystem. Restor. Ecol. 28, 233–243 (2020).

    Article  Google Scholar 

  217. Ceccarelli, D. M. et al. Substrate stabilisation and small structures in coral restoration: state of knowledge, and considerations for management and implementation. PLoS ONE 15, e0240846 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Goreau, T. J. F. G. & Prong, P. Biorock electric reefs grow back severely eroded beaches in months. J. Mar. Sci. Eng. 5, 7–9 (2017).

    Article  Google Scholar 

  219. Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).

    Article  Google Scholar 

  220. Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36, 561–575 (2017).

    Article  Google Scholar 

  221. Timmers, M. A. et al. Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification. Proc. Natl Acad. Sci. USA 118, e2103275118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Haas, A. F. et al. Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 1, e108 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Haas, A. F. et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE 6, e27973 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Nelson, C. E. et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 7, 962–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Scofield, V., Jacques, S. M. S., Guimarães, J. R. D. & Farjalla, V. F. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons. Front. Microbiol. 6, 310 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Roach, T. N. F. et al. Microbial bioenergetics of coral-algal interactions. PeerJ 5, e3423 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Weijerman, M. et al. Evaluating management strategies to optimise coral reef ecosystem services. J. Appl. Ecol. 55, 1823–1833 (2018).

    Article  Google Scholar 

  230. Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. Silveira, C. B. et al. Microbial and sponge loops modify fish production in phase-shifting coral reefs. Environ. Microbiol. 17, 3832–3846 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  233. Faure, V., Pinazo, C., Torréton, J. P. & Jacquet, S. Modelling the spatial and temporal variability of the SW lagoon of New Caledonia I: a new biogeochemical model based on microbial loop recycling. Mar. Pollut. Bull. 61, 465–479 (2010).

    Article  CAS  PubMed  Google Scholar 

  234. Alva-Basurto, J. C. & Arias-González, J. E. Modelling the effects of climate change on a Caribbean coral reef food web. Ecol. Modell. 289, 1–14 (2014).

    Article  Google Scholar 

  235. Wild-Allen, K., Skerratt, J., Whitehead, J., Rizwi, F. & Parslow, J. Mechanisms driving estuarine water quality: a 3D biogeochemical model for informed management. Estuar. Coast. Shelf Sci. 135, 33–45 (2013).

    Article  CAS  Google Scholar 

  236. Anthony, K. R. N. et al. Ocean acidification and warming will lower coral reef resilience. Glob. Change Biol. 17, 1798–1808 (2011).

    Article  Google Scholar 

  237. Sarmento, H., Montoya, J. M., Vázquez-Domínguez, E., Vaqué, D. & Gasol, J. M. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Phil. Trans. R. Soc. Lond. B 365, 2137–2149 (2010).

    Article  Google Scholar 

  238. Kramer, D. B. Adaptive harvesting in a multiple-species coral-reef food web. Ecol. Soc. 13, 17 (2008).

    Article  Google Scholar 

  239. Cheung, P. Y., Nozawa, Y. & Miki, T. Ecosystem engineering structures facilitate ecological resilience: a coral reef model. Ecol. Res. 36, 673–685 (2021).

    Article  Google Scholar 

  240. van Hoytema, N. et al. A carbon cycling model shows strong control of seasonality and importance of sponges on the functioning of a northern Red Sea coral reef. Coral Reefs 42, 367–381 (2023).

    Article  Google Scholar 

  241. Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  242. Ruiz Sebastián, C. & McClanahan, T. R. Description and validation of production processes in the coral reef ecosystem model CAFFEE (Coral-Algae-Fish-Fisheries Ecosystem Energetics) with a fisheries closure and climatic disturbance. Ecol. Modell. 263, 326–348 (2013).

    Article  Google Scholar 

  243. Yñiguez, A. T., McManus, J. W. & DeAngelis, D. L. Allowing macroalgae growth forms to emerge: use of an agent-based model to understand the growth and spread of macroalgae in Florida coral reefs, with emphasis on Halimeda tuna. Ecol. Modell. 216, 60–74 (2008).

    Article  Google Scholar 

  244. Langmead, O. & Sheppard, C. Coral reef community dynamics and disturbance: a simulation model. Ecol. Modell. 175, 271–290 (2004).

    Article  Google Scholar 

  245. Arias-González, J. E., Nuñez-Lara, E., González-Salas, C. & Galzin, R. Trophic models for investigation of fishing effect on coral reef ecosystems. Ecol. Modell. 172, 197–212 (2004).

    Article  Google Scholar 

  246. Blackwood, J. C., Hastings, A. & Mumby, P. J. A model-based approach to determine the long-term effects of multiple interacting stressors on coral reefs. Ecol. Appl. 21, 2722–2733 (2011).

    Article  PubMed  Google Scholar 

  247. Little, L. R. et al. ELFSim-A model for evaluating management options for spatially structured reef fish populations: an illustration of the ‘larval subsidy’ effect. Ecol. Modell. 205, 381–396 (2007).

    Article  Google Scholar 

  248. Tsehaye, I. & Nagelkerke, L. A. J. Exploring optimal fishing scenarios for the multispecies artisanal fisheries of Eritrea using a trophic model. Ecol. Modell. 212, 319–333 (2008).

    Article  Google Scholar 

  249. Renken, H. & Mumby, P. J. Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach. Ecol. Modell. 220, 1305–1314 (2009).

    Article  Google Scholar 

  250. Melbourne-Thomas, J., Johnson, C. R. & Fulton, E. A. Regional-scale scenario analysis for the Meso-American Reef system: modelling coral reef futures under multiple stressors. Ecol. Modell. 222, 1756–1770 (2011).

    Article  Google Scholar 

  251. Wolanski, E., Richmond, R. H. & McCook, L. A model of the effects of land-based, human activities on the health of coral reefs in the Great Barrier Reef and in Fouha Bay, Guam, Micronesia. J. Mar. Syst. 46, 133–144 (2004).

    Article  Google Scholar 

  252. Eakin, C. M. A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull. Mar. Sci. 69, 171–186 (2001).

    Google Scholar 

  253. Eakin, C. M. Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982-1983 El Niño at Uva Island in the eastern Pacific. Coral Reefs 15, 109–119 (1996).

    Google Scholar 

  254. Edwards, H. J. et al. How much time can herbivore protection buy for coral reefs under realistic regimes of hurricanes and coral bleaching? Glob. Change Biol. 17, 2033–2048 (2011).

    Article  Google Scholar 

  255. Mongin, M. & Baird, M. The interacting effects of photosynthesis, calcification and water circulation on carbon chemistry variability on a coral reef flat: a modelling study. Ecol. Modell. 284, 19–34 (2014).

    Article  CAS  Google Scholar 

  256. Kleypas, J. A. Modeled estimates of global reef habitat and carbonate production since the last glacial maximum. Paleoceanography 12, 533–545 (1997).

    Article  Google Scholar 

  257. Weijerman, M., Fulton, E. A. & Parrish, F. A. Comparison of coral reef ecosystems along a fishing pressure gradient. PLoS ONE 8, e63797 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Weijerman, M. et al. An integrated coral reef ecosystem model to support resource management under a changing climate. PLoS ONE 10, e0144165 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Baskett, M. L., Nisbet, R. M., Kappel, C. V., Mumby, P. J. & Gaines, S. D. Conservation management approaches to protecting the capacity for corals to respond to climate change: a theoretical comparison. Glob. Change Biol. 16, 1229–1246 (2010).

    Article  Google Scholar 

  260. Skerratt, J. H. et al. Simulated nutrient and plankton dynamics in the Great Barrier Reef (2011–2016). J. Mar. Syst. 192, 51–74 (2019).

    Article  Google Scholar 

  261. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  262. Hennige, S. J. et al. Using the Goldilocks Principle to model coral ecosystem engineering. Proc. R. Soc. Lond. B 288, 20211260 (2021).

    CAS  Google Scholar 

  263. Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).

    Article  Google Scholar 

  264. Kraines, S., Suzuki, Y., Yamada, K. & Komiyama, H. Separating biological and physical changes in dissolved oxygen concentration in a coral reef. Limnol. Oceanogr. 41, 1790–1799 (1996).

    Article  Google Scholar 

  265. Lima, L. F. O. et al. Modeling of the coral microbiome: the influence of temperature and microbial network. MBio 11, https://doi.org/10.1128/mbio.02691-19 (2020).

  266. McClanahan, T. R. et al. Prioritizing key resilience indicators to support coral reef management in a changing climate. PLoS ONE 7, e42884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. McDonald, R. A. et al. Zigzag persistence for coral reef resilience using a stochastic spatial model. J. R. Soc. Interface 20, 20230280 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Liu, P.-J. et al. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Mar. Environ. Res. 68, 106–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  269. Mumby, P. J., Hedley, J. D., Zychaluk, K., Harborne, A. R. & Blackwell, P. G. Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: fresh insights on resilience from a simulation model. Ecol. Modell. 196, 131–148 (2006).

    Article  Google Scholar 

  270. Holmes, G. & Johnstone, R. W. Modelling coral reef ecosystems with limited observational data. Ecol. Modell. 221, 1173–1183 (2010).

    Article  Google Scholar 

  271. Houk, P., Cuetos-Bueno, J., Kerr, A. M. & McCann, K. Linking fishing pressure with ecosystem thresholds and food web stability on coral reefs. Ecol. Monogr. 88, 109–119 (2018).

    Article  Google Scholar 

  272. Meesters, E. H., Bak, R. P. M., Westmacott, S., Ridgley, M. & Dollar, S. A fuzzy logic model to predict coral reef development under nutrient and sediment stress. Conserv. Biol. 12, 957–965 (1998).

    Article  Google Scholar 

  273. Gustafsson, M. S. M., Baird, M. E. & Ralph, P. J. The interchangeability of autotrophic and heterotrophic nitrogen sources in Scleractinian coral symbiotic relationships: a numerical study. Ecol. Modell. 250, 183–194 (2013).

    Article  CAS  Google Scholar 

  274. Gustafsson, M. S. M., Baird, M. E. & Ralph, P. J. Modeling photoinhibition-driven bleaching in Scleractinian coral as a function of light, temperature, and heterotrophy. Limnol. Oceanogr. 59, 603–622 (2014).

    Article  Google Scholar 

  275. Mongin, M. et al. The exposure of the Great Barrier Reef to ocean acidification. Nat. Commun. 7, 10732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Baird, M. E. et al. A mechanistic model of coral bleaching due to temperature-mediated light-driven reactive oxygen build-up in zooxanthellae. Ecol. Modell. 386, 20–37 (2018).

    Article  CAS  Google Scholar 

  277. Baird, M. E. et al. Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data. Environ. Model. Softw. 78, 79–96 (2016).

    Article  Google Scholar 

  278. Melbourne-Thomas, J. et al. A multi-scale biophysical model to inform regional management of coral reefs in the western Philippines and South China Sea. Environ. Model. Softw. 26, 66–82 (2011).

    Article  Google Scholar 

  279. Carturan, B. S., Pither, J., Maréchal, J. P., Bradshaw, C. J. A. & Parrott, L. Combining agent-based, trait-based and demographic approaches to model coral-community dynamics. eLife 9, e55993 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. McClanahan, T. R. A coral reef ecosystem-fisheries model: impacts of fishing intensity and catch selection on reef structure and processes. Ecol. Modell. 80, 1–19 (1995).

    Article  CAS  Google Scholar 

  281. Madin, J. S. & Connolly, S. R. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444, 477–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  282. Brown, C. J. et al. Tracing the influence of land-use change on water quality and coral reefs using a Bayesian model. Sci. Rep. 7, 4740 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  283. De’ath, G. & Fabricius, K. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol. Appl. 20, 840–850 (2010).

    Article  PubMed  Google Scholar 

  284. Bozec, Y. M. & Mumby, P. J. Synergistic impacts of global warming on the resilience of coral reefs. Phil. Trans. R. Soc. Lond. B 370, 20130267 (2015).

    Article  Google Scholar 

  285. Anderson, T. R. & Ducklow, H. W. Microbial loop carbon cycling in ocean environments studied using a simple steady-state model. Aquat. Microb. Ecol. 26, 37–49 (2001).

    Article  Google Scholar 

  286. Cherabier, P. & Ferrière, R. Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production. ISME J. 16, 1130–1139 (2022).

    Article  PubMed  Google Scholar 

  287. Hasumi, H. & Nagata, T. Modeling the global cycle of marine dissolved organic matter and its influence on marine productivity. Ecol. Modell. 288, 9–24 (2014).

    Article  CAS  Google Scholar 

  288. Jost, C. et al. The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model. Theor. Popul. Biol. 66, 37–51 (2004).

    Article  PubMed  Google Scholar 

  289. De Laender, F., Van Oevelen, D., Soetaert, K. & Middelburg, J. J. Carbon transfer in herbivore-and microbial loop-dominated pelagic food webs in the southern Barents Sea during spring and summer. Mar. Ecol. Prog. Ser. 398, 93–107 (2010).

    Article  Google Scholar 

  290. Polimene, L., Allen, J. I. & Zavatarelli, M. Model of interactions between dissolved organic carbon and bacteria in marine systems. Aquat. Microb. Ecol. 43, 127–138 (2006).

    Article  Google Scholar 

  291. Madin, J. S., Hughes, T. P. & Connolly, S. R. Calcification, storm damage and population resilience of tabular corals under climate change. PLoS ONE 7, e46637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918 (2013).

    Article  CAS  PubMed  Google Scholar 

  294. Kubicek, A. & Reuter, H. Mechanics of multiple feedbacks in benthic coral reef communities. Ecol. Modell. 329, 29–40 (2016).

    Article  Google Scholar 

  295. Niquil, N., Jackson, G. A., Legendre, L. & Delesalle, B. Inverse model analysis of the planktonic food web of Takapoto Atoll (French Polynesia). Mar. Ecol. Prog. Ser. 165, 17–29 (1998).

    Article  Google Scholar 

  296. Palmer, J. R. & Totterdell, I. J. Production and export in a global ocean ecosystem model. Deep Sea Res. Part I Oceanogr. Res. Pap. 48, 1169–1198 (2001).

    Article  CAS  Google Scholar 

  297. Alderdice, R. et al. Deoxygenation lowers the thermal threshold of coral bleaching. Sci. Rep. 12, 18273 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Haas, A. F., Smith, J. E., Thompson, M. & Deheyn, D. D. Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae. PeerJ 2, e235 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Bergstrom, E. et al. Inorganic carbon uptake strategies in coralline algae: plasticity across evolutionary lineages under ocean acidification and warming. Mar. Environ. Res. 161, 105107 (2020).

    Article  CAS  PubMed  Google Scholar 

  300. Fabricius, K. E., Kluibenschedl, A., Harrington, L., Noonan, S. & De’ath, G. In situ changes of tropical crustose coralline algae along carbon dioxide gradients. Sci. Rep. 5, 9537 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Dutra, E., Koch, M., Peach, K. & Manfrino, C. Tropical crustose coralline algal individual and community responses to elevated pCO2 under high and low irradiance. ICES J. Mar. Sci. 73, 803–813 (2016).

    Article  Google Scholar 

  302. De Goeij, J. M., Van Den Berg, H., Van Oostveen, M. M., Epping, E. H. G. & Van Duyl, F. C. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357, 139–151 (2008).

    Article  Google Scholar 

  303. Allison, N., Cohen, I., Finch, A. A., Erez, J. & Tudhope, A. W. Corals concentrate dissolved inorganic carbon to facilitate calcification. Nat. Commun. 5, 5741 (2014).

    Article  CAS  PubMed  Google Scholar 

  304. Wilson, R. W. et al. Contribution of fish to the marine inorganic carbon cycle. Science 323, 359–362 (2009).

    Article  CAS  PubMed  Google Scholar 

  305. Wild, C., Niggl, W., Naumann, M. S. & Haas, A. F. Organic matter release by Red Sea coral reef organisms-Potential effects on microbial activity and in situ O2 availability. Mar. Ecol. Prog. Ser. 411, 61–71 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Maughan, R. Hanna, T. Roach, W. Barnes, L. ter Horst, E. Nixon and B. Darby for their comments, suggestions and stimulating discussions in the writing of this article. Sections of this work also appear as the fifth chapter in J.L.B.’s doctoral dissertation, titled Coral Reef Arks: Molecular Mechanisms Underlying the Demise and Recovery of Coral Reef Ecosystems80. J.L.B. was the primary investigator and author of this Perspective.

Author information

Authors and Affiliations

Authors

Contributions

F.R., A.C.H. and J.L.B. contributed equally to the conceptualization of the ideas in this Perspective. J.L.B. wrote the paper. F.R. and A.C.H. contributed to edits and revisions.

Corresponding author

Correspondence to Jason L. Baer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Tries Razak, David Suggett and Gareth Williams for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and reference list for the 100 modelling studies used to generate Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baer, J.L., Hartmann, A.C. & Rohwer, F. A control theory framework and in situ experimental platform for informing restoration of coral reefs. Nat Ecol Evol (2025). https://doi.org/10.1038/s41559-025-02741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-025-02741-4

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology