Abstract
Coral reefs provide crucial ecosystem services to over 1 billion people globally and this intense pressure is causing their decline. Despite substantial investments in coral restoration and gradual advancements in coral propagation techniques, efforts focused on these ecosystem engineers are not yet fully restoring the ecological functions necessary for thriving reefs. This Perspective provides a road map for how to apply control theory to coral reef restoration, leveraging the framework’s proven effectiveness for optimizing the growth of crops and expanding it to a complex ecosystem. An in situ mesocosm called Coral Reef Arks is used as a platform to test control interventions and refine the approach. Four field experiments using Coral Reef Arks show how control interventions are used to alter ecological and environmental conditions and guide reef state factors towards desired targets. The results from these tests identify control interventions and parameter relationships that are integrated into predictive models to determine the scale at which to intervene on natural reefs. By using real-time ecological feedback, this control-based framework offers a path to identify precise, adaptable interventions that go beyond static conservation methods, providing a dynamic approach to maintain and enhance reef function in the face of ongoing environmental changes.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Souter, D. et al. (eds). Status of Coral Reefs of the World: 2020 Report (Global Coral Reef Monitoring Network and International Coral Reef Initiative, 2021).
Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).
Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).
Gove, J. M. et al. Coral reefs benefit from reduced land–sea impacts under ocean warming. Nature 621, 536–542 (2023).
Lange, I. D. et al. Coral restoration can drive rapid reef carbonate budget recovery. Curr. Biol. 34, 1341–1348 (2024).
Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Conserv. 236, 305–314 (2019).
Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).
Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected areas improve reef resilience? Ann. Rev. Mar. Sci. 11, 307–334 (2019).
Boström-Einarsson, L. et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).
Hughes, T. P., Baird, A. H., Morrison, T. H. & Torda, G. Principles for coral reef restoration in the Anthropocene. One Earth 6, 656–665 (2023).
Alexander, S., Aronson, J., Whaley, O. & Lamb, D. The relationship between ecological restoration and the ecosystem services concept. Ecol. Soc. 21, 1 (2016).
Suggett, D. J., Edwards, M., Cotton, D., Hein, M. & Camp, E. F. An integrative framework for sustainable coral reef restoration. One Earth 6, 666–681 (2023).
Hein, M. et al. Mapping the Global Funding Landscape for Coral Reef Restoration (International Coral Reef Initiative, 2021).
Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B 276, 3019–3025 (2009).
Ladd, M. C., Burkepile, D. E. & Shantz, A. A. Near‐term impacts of coral restoration on target species, coral reef community structure, and ecological processes. Restor. Ecol. 27, 1166–1176 (2019).
Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 16042 (2016).
Hein, M. Y. et al. Coral restoration effectiveness: multiregional snapshots of the long-term responses of coral assemblages to restoration. Diversity 12, 153 (2020).
Suggett, D. J. et al. Restoration as a meaningful aid to ecological recovery of coral reefs. npj Ocean Sustain. 3, 20 (2024).
Silbiger, N. J., Guadayol, Ò., Thomas, F. I. M. & Donahue, M. J. Reefs shift from net accretion to net erosion along a natural environmental gradient. Mar. Ecol. Prog. Ser. 515, 33–44 (2014).
Hein, M. Y. et al. Perspectives on the use of coral reef restoration as a strategy to support and improve reef ecosystem services. Front. Mar. Sci. 8, 618303 (2021).
Hatcher, B. G. Coral reef ecosystems: how much greater is the whole than the sum of the parts? Coral Reefs 16, S77–S91 (1997).
Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 39666 (2016).
Shaver, E. C. & Silliman, B. R. Time to cash in on positive interactions for coral restoration. PeerJ 5, e3499 (2017).
Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).
Ladd, M. C. & Shantz, A. A. Trophic interactions in coral reef restoration: a review. Food Webs 24, e00149 (2020).
Isabel, C. et al. Multiple trait approach to inform ecosystem service value of corals propagated for restoration on the Great Barrier Reef. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2030847/v1 (2023).
Rogers, A. et al. Anticipative management for coral reef ecosystem services in the 21st century. Glob. Change Biol. 21, 504–514 (2015).
Rinkevich, B. Ecological engineering approaches in coral reef restoration. ICES J. Mar. Sci. 78, 410–420 (2021).
Coleman, M. A. et al. Restore or redefine: future trajectories for restoration. Front. Mar. Sci. 7, 237 (2020).
Mcleod, E. et al. The future of resilience-based management in coral reef ecosystems. J. Environ. Manag. 233, 291–301 (2019).
Leslie, H. M. & McLeod, K. L. Confronting the challenges of implementing marine ecosystem‐based management. Front. Ecol. Environ. 5, 540–548 (2007).
Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).
Harvey, B. J., Nash, K. L., Blanchard, J. L. & Edwards, D. P. Ecosystem‐based management of coral reefs under climate change. Ecol. Evol. 8, 6354–6368 (2018).
Lamont, T. A. C. et al. Multi-dimensional approaches to scaling up coral reef restoration. Mar. Policy 143, 105199 (2022).
Weijerman, M., Fulton, E. A. & Brainard, R. E. Management strategy evaluation applied to coral reef ecosystems in support of ecosystem-based management. PLoS ONE 11, e0152577 (2016).
Heinimann, H. R. A concept in adaptive ecosystem management—an engineering perspective. Ecol. Manag. 259, 848–856 (2010).
Loehle, C. Control theory and the management of ecosystems. J. Appl. Ecol. 43, 957–966 (2006).
Ding, Y., Wang, L., Li, Y. & Li, D. Model predictive control and its application in agriculture: a review. Comput. Electr. Agric. 151, 104–117 (2018).
Zhang, N., Wang, M. & Wang, N. Precision agriculture—a worldwide overview. Comput. Electr. Agric. 36, 113–132 (2002).
Farnum, P. Precision forestry—finding the context. In Proc. 1st International Precision Forestry Cooperative Symposium 3–5 (Institute of Forest Resources, College of Forest Resources, Univ. Washington, 2001).
Nocentini, S., Buttoud, G., Ciancio, O. & Corona, P. Managing forests in a changing world: the need for a systemic approach. A review. For. Syst. 26, eR01 (2017).
Meza, M. E. M. & Bhaya, A. Control theory and the management of ecosystems: a threshold policy with hysteresis is robust. Appl. Math. Comput. 216, 3133–3145 (2010).
Walters, C. J. & Hilborn, R. Ecological optimization and adaptive management. Annu. Rev. Ecol. Syst. 9, 157–188 (1978).
Holland, J. H. Studying complex adaptive systems. J. Syst. Sci. Complex 19, 1–8 (2006).
Hill, J. I. & Durham, S. L. Input, signals, and control in ecosystems. In Proc. ICASSP ‘78. IEEE International Conference on Acoustics, Speech, and Signal Processing 391–397 (IEEE, 1978).
Estes, J. A. & Palmisano, J. F. Sea otters: their role in structuring nearshore communities. Science 185, 1058–1060 (1974).
Smith, J. G. et al. Behavioral responses across a mosaic of ecosystem states restructure a sea otter–urchin trophic cascade. Proc. Natl Acad. Sci. USA 118, e2012493118 (2021).
Kemp, W. M., Testa, J. M., Conley, D. J., Gilbert, D. & Hagy, J. D. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 6, 2985–3008 (2009).
Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).
Shantz, A. A., Ladd, M. C. & Burkepile, D. E. Overfishing and the ecological impacts of extirpating large parrotfish from Caribbean coral reefs. Ecol. Monogr. 90, e01403 (2020).
Baer, J. L. et al. Coral Reef Arks: an in situ mesocosm and toolkit for assembling reef communities. J. Vis. Exp. https://doi.org/10.3791/64778 (2023).
Seraphim, M. J. et al. Interactions between coral restoration and fish assemblages: implications for reef management. J. Fish. Biol. 97, 633–655 (2020).
Silveira, C. B. et al. Viral predation pressure on coral reefs. BMC Biol. 21, 77 (2023).
Haas, A. F. et al. Can we measure beauty? Computational evaluation of coral reef aesthetics. PeerJ 3, e1390 (2015).
Wegley Kelly, L. et al. Distinguishing the molecular diversity, nutrient content, and energetic potential of exometabolomes produced by macroalgae and reef-building corals. Proc. Natl Acad. Sci. USA 119, e2110283119 (2022).
Heenan, A., Williams, G. J. & Williams, I. D. Natural variation in coral reef trophic structure across environmental gradients. Front. Ecol. Environ. 18, 69–75 (2020).
Williams, G. J., Gove, J. M., Eynaud, Y., Zgliczynski, B. J. & Sandin, S. A. Local human impacts decouple natural biophysical relationships on Pacific coral reefs. Ecography 38, 751–761 (2015).
Rinkevich, B. Conservation of coral reefs through active restoration measures: recent approaches and last decade progress. Environ. Sci. Technol. 39, 4333–4342 (2005).
Horoszowski-Fridman, Y. B., Brêthes, J.-C., Rahmani, N. & Rinkevich, B. Marine silviculture: incorporating ecosystem engineering properties into reef restoration acts. Ecol. Eng. 82, 201–213 (2015).
Rinkevich, B. The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world. J. Mar. Sci. Eng. 7, 201 (2019).
Lirman, D. et al. Propagation of the threatened staghorn coral Acropora cervicornis: methods to minimize the impacts of fragment collection and maximize production. Coral Reefs 29, 729–735 (2010).
Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).
Banaszak, A. T. et al. Applying coral breeding to reef restoration: best practices, knowledge gaps, and priority actions in a rapidly-evolving field. Restor. Ecol. 31, e13913 (2023).
Biggs, B. C. Harnessing natural recovery processes to improve restoration outcomes: an experimental assessment of sponge-mediated coral reef restoration. PLoS ONE 8, e64945 (2013).
Peixoto, R. S. et al. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).
Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).
Higgins, E., Metaxas, A. & Scheibling, R. E. A systematic review of artificial reefs as platforms for coral reef research and conservation. PLoS ONE 17, e0261964 (2022).
Shea, K. & Possingham, H. P. Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management. J. Appl. Ecol. 37, 77–86 (2000).
Carilli, J. et al. Escaping the benthos with Coral Reef Arks: effects on coral translocation and fish biomass. PeerJ 12, e17640 (2024).
Stigebrandt, A. & Gustafsson, B. G. Improvement of Baltic proper water quality using large-scale ecological engineering. Ambio 36, 280–286 (2007).
Conley, D. J. et al. Tackling hypoxia in the Baltic Sea: is engineering a solution? Environ. Sci. Technol. 43, 3407–3411 (2009).
Sawall, Y., Harris, M., Lebrato, M., Wall, M. & Feng, E. Y. Discrete pulses of cooler deep water can decelerate coral bleaching during thermal stress: implications for artificial upwelling during heat stress events. Front. Mar. Sci. 7, 720 (2020).
Weathers, K. C., Ewing, H. A., Jones, C. G. & Strayer, D. L. in Fundamentals of Ecosystem Science 2nd edn (eds Weathers, K. C. et al.) 249–264 (Elsevier, 2021).
Nelson, C. E., Wegley Kelly, L. & Haas, A. F. Microbial interactions with dissolved organic matter are central to coral reef ecosystem function and resilience. Ann. Rev. Mar. Sci. 15, 431–460 (2023).
Candy, A. S. et al. Small-scale oxygen distribution patterns in a coral reef. Front. Mar. Sci. 10, 1135686 (2023).
Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).
Kaheman, K., Kutz, J. N. & Brunton, S. L. SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proc. R. Soc. A 476, 20200279 (2020).
Brunton, S. L., Proctor, J. L. & Kutz, J. N. Sparse identification of nonlinear dynamics with control (SINDYc). IFAC-PapersOnLine 49, 710–715 (2016).
Champion, K. From Data to Dynamics: Discovering Governing Equations from Data. Doctoral dissertation, Univ. of Washington (2019).
Baer, J. L. Coral Reef Arks: Molecular Mechanisms Underlying the Demise and Recovery of Coral Reef Ecosystems. Doctoral dissertation, San Diego State Univ. (2024).
Pearman, J. K. et al. Cross-shelf investigation of coral reef cryptic benthic organisms reveals diversity patterns of the hidden majority. Sci. Rep. 8, 8090 (2018).
Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: what are we missing? PLoS ONE 6, e25026 (2011).
Boisvert, T. S., Ruzicka, R. R., Schopmeyer, S. A. & Stallings, C. D. Restoration success limited by poor long-term survival after 9 years of Acropora cervicornis outplanting in the upper Florida Keys, United States. Restor. Ecol. 32, e14129 (2024).
Glasl, B. et al. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome 7, 94 (2019).
Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resources Institute, 2011).
Feng, E. Y., Sawall, Y., Wall, M., Lebrato, M. & Fu, Y. Modeling coral bleaching mitigation potential of water vertical translocation—an analogue to geoengineered artificial upwelling. Front. Mar. Sci. 7, 556192 (2020).
Crabbe, M. J. C. Modelling effects of geoengineering options in response to climate change and global warming: implications for coral reefs. Comput. Biol. Chem. 33, 415–420 (2009).
Sovacool, B. K., Baum, C. M., Low, S. & Fritz, L. Coral reefs, cloud forests and radical climate interventions in Australia’s wet tropics and Great Barrier Reef. PLoS Clim. 2, e0000221 (2023).
Nguyen, P. Q., Huang, X., Collins, D. S., Collins, J. J. & Lu, T. Harnessing synthetic biology to enhance ocean health. Trends Biotechnol. 41, 860–874 (2023).
Bradbury, R. H. & Seymour, R. M. Coral reef science and the new commons. Coral Reefs 28, 831–837 (2009).
Hemming, V. et al. An introduction to decision science for conservation. Conserv. Biol. 36, e13868 (2022).
Hanea, A. M., Hemming, V. & Nane, G. F. Uncertainty quantification with experts. Risk Anal. 42, 254–263 (2022).
Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).
Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 293–306 (2009).
Burns, J. H. R., Delparte, D., Gates, R. D. & Takabayashi, M. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. PeerJ 3, e1077 (2015).
Carradec, Q. et al. A framework for in situ molecular characterization of coral holobionts using nanopore sequencing. Sci. Rep. 10, 15893 (2020).
Chang, J. J. M., Ip, Y. C. A., Bauman, A. G. & Huang, D. MinION-in-ARMS: nanopore sequencing to expedite barcoding of specimen-rich macrofaunal samples from autonomous reef monitoring structures. Front. Mar. Sci. 7, 448 (2020).
Mills, M. S. et al. Assessment of the utility of underwater hyperspectral imaging for surveying and monitoring coral reef ecosystems. Sci. Rep. 13, 21103 (2023).
Wilson, S. K., Graham, N. A. J., Holmes, T. H., MacNeil, M. A. & Ryan, N. M. Visual versus video methods for estimating reef fish biomass. Ecol. Indic. 85, 146–152 (2018).
Kennedy, E. V. et al. Reef Cover, a coral reef classification for global habitat mapping from remote sensing. Sci. Data 8, 196 (2021).
Takeshita, Y. et al. Assessment of net community production and calcification of a coral reef using a boundary layer approach. J. Geophys. Res. Oceans 121, 5655–5671 (2016).
Freeman, S. E., Freeman, L. A., Giorli, G. & Haas, A. F. Photosynthesis by marine algae produces sound, contributing to the daytime soundscape on coral reefs. PLoS ONE 13, e0201766 (2018).
Gordon, T. A. C. et al. Habitat degradation negatively affects auditory settlement behavior of coral reef fishes. Proc. Natl Acad. Sci. USA 115, 5193–5198 (2018).
Crossland, C. J., Hatcher, B. G. & Smith, S. V. Role of coral reefs in global ocean production. Coral Reefs 10, 55–64 (1991).
Alldredge, A. L., Carlson, C. A. & Carpenter, R. C. Sources of organic carbon to coral reef flats. Oceanography 26, 108–113 (2013).
Odum, H. T. & Odum, E. P. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol. Monogr. 25, 291–320 (1955).
Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).
Kleypas, J. et al. Designing a blueprint for coral reef survival. Biol. Conserv. 257, 109107 (2021).
van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2, 747–762 (2021).
Mongin, M., Baird, M. E., Lenton, A., Neill, C. & Akl, J. Reversing ocean acidification along the Great Barrier Reef using alkalinity injection. Environ. Res. Let. 16, 64068 (2021).
Weijerman, M. et al. How models can support ecosystem-based management of coral reefs. Prog. Oceanogr. 138, 559–570 (2015).
Pethybridge, H. R. et al. Calibrating process-based marine ecosystem models: an example case using Atlantis. Ecol. Model. 412, 108822 (2019).
Hipsey, M. R. et al. A system of metrics for the assessment and improvement of aquatic ecosystem models. Environ. Mod. Softw. 128, 104697 (2020).
Reis, V. Mdos et al. Carbonate production by benthic communities on shallow coralgal reefs of Abrolhos Bank, Brazil. PLoS ONE 11, e0154417 (2016).
Price, N. N., Martz, T. R., Brainard, R. E. & Smith, J. E. Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs. PLoS ONE 7, e43843 (2012).
Vargas-Angel, B. et al. Baseline assessment of net calcium carbonate accretion rates on US Pacific reefs. PLoS ONE 10, e0142196 (2015).
Randi, C. B. et al. Calcium carbonate production in the southernmost subtropical Atlantic coral reef. Mar. Environ. Res. 172, 105490 (2021).
Lange, I. D., Perry, C. T. & Alvarez-Filip, L. Carbonate budgets as indicators of functional reef “health”: a critical review of data underpinning census-based methods and current knowledge gaps. Ecol. Indic. 110, 105857 (2020).
Johnson, M. D., Price, N. N. & Smith, J. E. Calcification accretion units (CAUs): a standardized approach for quantifying recruitment and calcium carbonate accretion in marine habitats. Methods Ecol. Evol. 13, 1436–1446 (2022).
Estrada-Saldívar, N., Jordán-Dalhgren, E., Rodríguez-Martínez, R. E., Perry, C. & Alvarez-Filip, L. Functional consequences of the long-term decline of reef-building corals in the Caribbean: evidence of across-reef functional convergence. R. Soc. Open Sci. 6, 190298 (2019).
Davis, K. L., Colefax, A. P., Tucker, J. P., Kelaher, B. P. & Santos, I. R. Global coral reef ecosystems exhibit declining calcification and increasing primary productivity. Commun. Earth Environ. 2, 105 (2021).
Januchowski-Hartley, F. A., Graham, N. A. J., Wilson, S. K., Jennings, S. & Perry, C. T. Drivers and predictions of coral reef carbonate budget trajectories. Proc. R. Soc. B 284, 20162553 (2017).
Sandin, S. A. et al. Baselines and degradation of coral reefs in the Northern Line Islands. PLoS ONE 3, e1548 (2008).
Newman, M. J. H., Paredes, G. A., Sala, E. & Jackson, J. B. C. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).
Edwards, C. B. et al. Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc. R. Soc. B 281, 20131835 (2014).
Williams, I. D. et al. Differences in reef fish assemblages between populated and remote reefs spanning multiple archipelagos across the central and western Pacific. J. Mar. Sci. 2011, 826234 (2011).
Sandin, S. A., Sampayo, E. M. & Vermeij, M. J. A. Coral reef fish and benthic community structure of Bonaire and Curaçao, Netherlands Antilles. Caribb. J. Sci. 44, 137–144 (2008).
Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).
Grafeld, S. et al. Divers’ willingness to pay for improved coral reef conditions in Guam: an untapped source of funding for management and conservation? Ecol. Econ. 128, 202–213 (2016).
Marshall, N. et al. Identifying indicators of aesthetics in the Great Barrier Reef for the purposes of management. PLoS ONE 14, e0210196 (2019).
Uyarra, M. C., Watkinson, A. R. & Cote, I. M. Managing dive tourism for the sustainable use of coral reefs: validating diver perceptions of attractive site features. Environ. Manage. 43, 1–16 (2009).
Silveira, C. B. et al. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genomics 21, 126 (2020).
Silveira, C. B. et al. Biophysical and physiological processes causing oxygen loss from coral reefs. eLife 8, e49114 (2019).
Wee, S. Y. C. et al. The role of in situ coral nurseries in supporting mobile invertebrate epifauna. J. Nat. Conserv 50, 125710 (2019).
Duffy, J. E. Reefs need richness. Nat. Ecol. Evol. 3, 149–150 (2019).
Bellwood, D. R., Wainwright, P. C., Fulton, C. J. & Hoey, A. S. Functional versatility supports coral reef biodiversity. Proc. R. Soc. B 273, 101–107 (2006).
Díaz-Pérez, L. et al. Coral reef health indices versus the biological, ecological and functional diversity of fish and coral assemblages in the Caribbean Sea. PLoS ONE 11, e0161812 (2016).
Galand, P. E. et al. Diversity of the Pacific Ocean coral reef microbiome. Nat. Commun. 14, 3039 (2023).
Ransome, E. et al. The importance of standardization for biodiversity comparisons: a case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo’orea coral reefs, French Polynesia. PLoS ONE 12, e0175066 (2017).
Wegley Kelly, L. et al. Molecular commerce on coral reefs: using metabolomics to reveal biochemical exchanges underlying holobiont biology and the ecology of coastal ecosystems. Front. Mar. Sci. 8, 630799 (2021).
Hartmann, A. C. et al. Meta-mass shift chemical profiling of metabolomes from coral reefs. Proc. Natl Acad. Sci. USA 114, 11685–11690 (2017).
Cortés-Useche, C. et al. Capture, culture and release of postlarvae fishes: proof-of-concept as a tool approach to support reef management. Front. Mar. Sci. 8, 718526 (2021).
Obolski, U., Hadany, L. & Abelson, A. Potential contribution of fish restocking to the recovery of deteriorated coral reefs: an alternative restoration method? PeerJ 4, e1732 (2016).
Manuel, O. S., Williams, S. M., Weil, E. & Cruz-Motta, J. J. Experimental evaluation of Diadema antillarum herbivory effects on benthic community assemblages. J. Exp. Mar. Biol. Ecol. 541, 151566 (2021).
Abelson, A., Obolski, U., Regoniel, P. & Hadany, L. Restocking herbivorous fish populations as a social-ecological restoration tool in coral reefs. Front. Mar. Sci. 3, 138 (2016).
Neilson, B. J., Wall, C. B., Mancini, F. T. & Gewecke, C. A. Herbivore biocontrol and manual removal successfully reduce invasive macroalgae on coral reefs. PeerJ 6, e5332 (2018).
Maciá, S., Robinson, M. P. & Nalevanko, A. Experimental dispersal of recovering Diadema antillarum increases grazing intensity and reduces macroalgal abundance on a coral reef. Mar. Ecol. Prog. Ser. 348, 173–182 (2007).
Nakamura, R. et al. Corals mass-cultured from eggs and transplanted as juveniles to their native, remote coral reef. Mar. Ecol. Prog. Ser. 436, 161–168 (2011).
Chamberland, V. F. et al. New seeding approach reduces costs and time to outplant sexually propagated corals for reef restoration. Sci. Rep. 7, 18076 (2017).
Sellares-Blasco, R. I., Villalpando, M. F., Guendulain-García, S. D. & Croquer, A. Assisted coral reproduction in the Dominican Republic: a successful story to replicate in the Caribbean. Front. Mar. Sci. 8, 669505 (2021).
Cruz, D. W. D. & Harrison, P. L. Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Sci. Rep. 7, 13985 (2017).
Quigley, K. M., Alvarez Roa, C., Beltran, V. H., Leggat, B. & Willis, B. L. Experimental evolution of the coral algal endosymbiont, Cladocopium goreaui: lessons learnt across a decade of stress experiments to enhance coral heat tolerance. Restor. Ecol. 29, e13342 (2021).
Humanes, A. et al. An experimental framework for selectively breeding corals for assisted evolution. Front. Mar. Sci. 8, 626 (2021).
Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).
Chan, W. Y., Peplow, L. M., Menéndez, P., Hoffmann, A. A. & van Oppen, M. J. H. Interspecific hybridization may provide novel opportunities for coral reef restoration. Front. Mar. Sci. 5, 160 (2018).
Levin, R. A. et al. Engineering strategies to decode and enhance the genomes of coral symbionts. Front. Microbiol. 8, 1220 (2017).
van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).
Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).
Hoegh-Guldberg, O. et al. Ecology: assisted colonization and rapid climate change. Science 321, 345–346 (2008).
Knapp, I. S. S. et al. Coral micro-fragmentation assays for optimizing active reef restoration efforts. PeerJ 10, e13653 (2022).
Page, C. A., Muller, E. M. & Vaughan, D. E. Microfragmenting for the successful restoration of slow growing massive corals. Ecol. Eng. 123, 86–94 (2018).
Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and western Atlantic. PeerJ 4, e2597 (2016).
Ladd, M. C., Shantz, A. A., Nedimyer, K. & Burkepile, D. E. Density dependence drives habitat production and survivorship of Acropora cervicornis used for restoration on a Caribbean coral reef. Front. Mar. Sci. 3, 261 (2016).
Kroon, F. J., Barneche, D. R. & Emslie, M. J. Fish predators control outbreaks of crown-of-thorns starfish. Nat. Commun. 12, 6986 (2021).
Plagányi, É. E., Babcock, R. C., Rogers, J., Bonin, M. & Morello, E. B. Ecological analyses to inform management targets for the culling of crown-of-thorns starfish to prevent coral decline. Coral Reefs 39, 1483–1499 (2020).
Fletcher, C. S., Bonin, M. C. & Westcott, D. A. An Ecologically-based Operational Strategy for COTS Control: Integrated Decision Making from the Site to the Regional Scale (Report to the NESP Tropical Water Quality Hub) (RRRC, 2020).
Williams, D. E., Miller, M. W., Bright, A. J. & Cameron, C. M. Removal of corallivorous snails as a proactive tool for the conservation of acroporid corals. PeerJ 2, e680 (2014).
Rivera-Posada, J., Caballes, C. F. & Pratchett, M. S. Lethal doses of oxbile, peptones and thiosulfate-citrate-bile-sucrose agar (TCBS) for Acanthaster planci; exploring alternative population control options. Mar. Pollut. Bull. 75, 133–139 (2013).
Delgado, G. A. & Sharp, W. C. Capitalizing on an ecological process to aid coral reef ecosystem restoration: can gastropod trophodynamics enhance coral survival? Coral Reefs 39, 319–330 (2020).
Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, 19–21 (2021).
Epstein, H. E., Smith, H. A., Torda, G. & van Oppen, M. J. H. Microbiome engineering: enhancing climate resilience in corals. Front. Ecol. Environ. 17, 100–108 (2019).
Cox, C. E. et al. Genetic testing reveals some mislabeling but general compliance with a ban on herbivorous fish harvesting in Belize. Conserv. Lett. 6, 132–140 (2013).
Bozec, Y. M., O’Farrell, S., Bruggemann, J. H., Luckhurst, B. E. & Mumby, P. J. Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc. Natl Acad. Sci. USA 113, 4536–4541 (2016).
Muallil, R. N. et al. Effectiveness of small locally-managed marine protected areas for coral reef fisheries management in the Philippines. Ocean Coast. Manag. 179, 104831 (2019).
Pikitch, E. K. et al. Ecosystem-based fishery management. Science 305, 346–348 (2004).
Mcclanahan, T. R., Graham, N. A. J., Macneil, M. A. & Cinner, J. E. Biomass-based targets and the management of multispecies coral reef fisheries. Conserv. Biol. 29, 409–417 (2015).
Champion, C., Suthers, I. M. & Smith, J. A. Zooplanktivory is a key process for fish production on a coastal artificial reef. Mar. Ecol. Prog. Ser. 541, 1–14 (2015).
Enochs, I. C. Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion. Mar. Biol. 159, 709–722 (2012).
Shafir, S., Van Rijn, J. & Rinkevich, B. A mid-water coral nursery. In Proc. 10th International Coral Reef Symposium, 1974–1979 (2006).
Cabaitan, P. C., Gomez, E. D. & Aliño, P. M. Effects of coral transplantation and giant clam restocking on the structure of fish communities on degraded patch reefs. J. Exp. Mar. Biol. Ecol. 357, 85–98 (2008).
Gordon, T. A. C. et al. Acoustic enrichment can enhance fish community development on degraded coral reef habitat. Nat. Commun. 10, 5414 (2019).
Vermeij, M. J. A., Marhaver, K. L., Huijbers, C. M., Nagelkerken, I. & Simpson, S. D. Coral larvae move toward reef sounds. PLoS ONE 5, e10660 (2010).
Simpson, S. D., Meekan, M. G., McCauley, R. D. & Jeffs, A. Attraction of settlement-stage coral reef fishes to reef noise. Mar. Ecol. Prog. Ser. 276, 263–268 (2004).
Alldredge, A. L., Holbrook, S. J., Schmitt, R. J., Brooks, A. J. & Stewart, H. Skeletal growth of four scleractinian corals is not enhanced by in situ mesozooplankton enrichment. Mar. Ecol. Prog. Ser. 489, 143–153 (2013).
McAfee, D. et al. Soundscape enrichment enhances recruitment and habitat building on new oyster reef restorations. J. Appl. Ecol. 60, 111–120 (2023).
Lillis, A., Bohnenstiehl, D. W. R. & Eggleston, D. B. Soundscape manipulation enhances larval recruitment of a reef-building mollusk. PeerJ 3, e999 (2015).
Visser, P. M., Ibelings, B. W., Bormans, M. & Huisman, J. Artificial mixing to control cyanobacterial blooms: a review. Aquat. Ecol. 50, 423–441 (2016).
Liu, S. et al. Review of artificial downwelling for mitigating hypoxia in coastal waters. Water 12, 2846 (2020).
Pan, Y. W. et al. Research progress in artificial upwelling and its potential environmental effects. Sci. China Earth Sci. 59, 236–248 (2016).
Zhang, C. et al. Eco-engineering approaches for ocean negative carbon emission. Sci. Bull. 67, 2564–2573 (2022).
Shelton, A. J. III & Richmond, R. H. Watershed restoration as a tool for improving coral reef resilience against climate change and other human impacts. Estuar. Coast. Shelf Sci. 183, 430–437 (2016).
Suárez‐Castro, A. F. et al. Global forest restoration opportunities to foster coral reef conservation. Glob. Change Biol. 27, 5238–5252 (2021).
DeMartini, E. et al. Terrigenous sediment impact on coral recruitment and growth affects the use of coral habitat by recruit parrotfishes (F. Scaridae). J. Coast. Conserv. 17, 417–429 (2013).
Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).
Jiao, N., Tang, K., Cai, H. & Mao, Y. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat. Rev. Microbiol. 9, 75 (2011).
Feng, E. Y., Keller, D. P., Koeve, W. & Oschlies, A. Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification? Environ. Res. Lett. 11, 74008 (2016).
Renforth, P. & Henderson, G. Assessing ocean alkalinity for carbon sequestration. Rev. Geophys. 55, 636–674 (2017).
Albright, R. et al. Reversal of ocean acidification enhances net coral reef calcification. Nature 531, 362–365 (2016).
Comeau, S., Edmunds, P. J., Lantz, C. A. & Carpenter, R. C. Water flow modulates the response of coral reef communities to ocean acidification. Sci. Rep. 4, 6681 (2014).
Reguero, B. G., Beck, M. W., Agostini, V. N., Kramer, P. & Hancock, B. Coral reefs for coastal protection: a new methodological approach and engineering case study in Grenada. J. Environ. Manag. 210, 146–161 (2018).
Brathwaite, A., Clua, E., Roach, R. & Pascal, N. Coral reef restoration for coastal protection: crafting technical and financial solutions. J. Environ. Manag. 310, 114718 (2022).
Amar, K. O. & Rinkevich, B. A floating mid-water coral nursery as larval dispersion hub: testing an idea. Mar. Biol. 151, 713–718 (2007).
Albert, J. A. et al. The contribution of nearshore fish aggregating devices (FADs) to food security and livelihoods in Solomon Islands. PLoS ONE 9, e115386 (2014).
Buckley, R. M., Itano, D. G. & Buckley, T. W. Fish aggregation device (FAD) enhancement of offshore fisheries in American Samoa. Bull. Mar. Sci. 44, 942–949 (1989).
Bell, J. D. et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. Clim. Change 3, 591–599 (2013).
Bell, J. D. et al. Optimising the use of nearshore fish aggregating devices for food security in the Pacific Islands. Mar. Policy 56, 98–105 (2015).
Levy, N. et al. Emerging 3D technologies for future reformation of coral reefs: enhancing biodiversity using biomimetic structures based on designs by nature. Sci. Total Environ. 830, 154749 (2022).
Levenstein, M. A. et al. Engineered substrates reveal species-specific inorganic cues for coral larval settlement. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2021-r1gxj (2021).
Leonard, C. et al. Performance of innovative materials as recruitment substrates for coral restoration. Restor. Ecol. 30, e13625 (2022).
Berman, O. et al. Design and application of a novel 3D printing method for bio-inspired artificial reefs. Ecol. Eng. 188, 106892 (2023).
Yanovski, R. & Abelson, A. Structural complexity enhancement as a potential coral-reef restoration tool. Ecol. Eng. 132, 87–93 (2019).
Williams, S. L. et al. Large-scale coral reef rehabilitation after blast fishing in Indonesia. Restor. Ecol. 27, 447–456 (2019).
Fox, H. E., Mous, P. J., Pet, J. S., Muljadi, A. H. & Caldwell, R. L. Experimental assessment of coral reef rehabilitation following blast fishing. Conserv. Biol. 19, 98–107 (2005).
Fox, H. E. et al. Rebuilding coral reefs: success (and failure) 16 years after low-cost, low-tech restoration. Restor. Ecol. 27, 862–869 (2019).
Jayanthi, M. et al. Perforated trapezoidal artificial reefs can augment the benefits of restoration of an island and its marine ecosystem. Restor. Ecol. 28, 233–243 (2020).
Ceccarelli, D. M. et al. Substrate stabilisation and small structures in coral restoration: state of knowledge, and considerations for management and implementation. PLoS ONE 15, e0240846 (2020).
Goreau, T. J. F. G. & Prong, P. Biorock electric reefs grow back severely eroded beaches in months. J. Mar. Sci. Eng. 5, 7–9 (2017).
Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).
Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36, 561–575 (2017).
Timmers, M. A. et al. Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification. Proc. Natl Acad. Sci. USA 118, e2103275118 (2021).
Haas, A. F. et al. Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 1, e108 (2013).
Haas, A. F. et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE 6, e27973 (2011).
Nelson, C. E. et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 7, 962–979 (2013).
Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
Scofield, V., Jacques, S. M. S., Guimarães, J. R. D. & Farjalla, V. F. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons. Front. Microbiol. 6, 310 (2015).
Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833 (2016).
Roach, T. N. F. et al. Microbial bioenergetics of coral-algal interactions. PeerJ 5, e3423 (2017).
Weijerman, M. et al. Evaluating management strategies to optimise coral reef ecosystem services. J. Appl. Ecol. 55, 1823–1833 (2018).
Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016).
Silveira, C. B. et al. Microbial and sponge loops modify fish production in phase-shifting coral reefs. Environ. Microbiol. 17, 3832–3846 (2015).
Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).
Faure, V., Pinazo, C., Torréton, J. P. & Jacquet, S. Modelling the spatial and temporal variability of the SW lagoon of New Caledonia I: a new biogeochemical model based on microbial loop recycling. Mar. Pollut. Bull. 61, 465–479 (2010).
Alva-Basurto, J. C. & Arias-González, J. E. Modelling the effects of climate change on a Caribbean coral reef food web. Ecol. Modell. 289, 1–14 (2014).
Wild-Allen, K., Skerratt, J., Whitehead, J., Rizwi, F. & Parslow, J. Mechanisms driving estuarine water quality: a 3D biogeochemical model for informed management. Estuar. Coast. Shelf Sci. 135, 33–45 (2013).
Anthony, K. R. N. et al. Ocean acidification and warming will lower coral reef resilience. Glob. Change Biol. 17, 1798–1808 (2011).
Sarmento, H., Montoya, J. M., Vázquez-Domínguez, E., Vaqué, D. & Gasol, J. M. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Phil. Trans. R. Soc. Lond. B 365, 2137–2149 (2010).
Kramer, D. B. Adaptive harvesting in a multiple-species coral-reef food web. Ecol. Soc. 13, 17 (2008).
Cheung, P. Y., Nozawa, Y. & Miki, T. Ecosystem engineering structures facilitate ecological resilience: a coral reef model. Ecol. Res. 36, 673–685 (2021).
van Hoytema, N. et al. A carbon cycling model shows strong control of seasonality and importance of sponges on the functioning of a northern Red Sea coral reef. Coral Reefs 42, 367–381 (2023).
Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).
Ruiz Sebastián, C. & McClanahan, T. R. Description and validation of production processes in the coral reef ecosystem model CAFFEE (Coral-Algae-Fish-Fisheries Ecosystem Energetics) with a fisheries closure and climatic disturbance. Ecol. Modell. 263, 326–348 (2013).
Yñiguez, A. T., McManus, J. W. & DeAngelis, D. L. Allowing macroalgae growth forms to emerge: use of an agent-based model to understand the growth and spread of macroalgae in Florida coral reefs, with emphasis on Halimeda tuna. Ecol. Modell. 216, 60–74 (2008).
Langmead, O. & Sheppard, C. Coral reef community dynamics and disturbance: a simulation model. Ecol. Modell. 175, 271–290 (2004).
Arias-González, J. E., Nuñez-Lara, E., González-Salas, C. & Galzin, R. Trophic models for investigation of fishing effect on coral reef ecosystems. Ecol. Modell. 172, 197–212 (2004).
Blackwood, J. C., Hastings, A. & Mumby, P. J. A model-based approach to determine the long-term effects of multiple interacting stressors on coral reefs. Ecol. Appl. 21, 2722–2733 (2011).
Little, L. R. et al. ELFSim-A model for evaluating management options for spatially structured reef fish populations: an illustration of the ‘larval subsidy’ effect. Ecol. Modell. 205, 381–396 (2007).
Tsehaye, I. & Nagelkerke, L. A. J. Exploring optimal fishing scenarios for the multispecies artisanal fisheries of Eritrea using a trophic model. Ecol. Modell. 212, 319–333 (2008).
Renken, H. & Mumby, P. J. Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach. Ecol. Modell. 220, 1305–1314 (2009).
Melbourne-Thomas, J., Johnson, C. R. & Fulton, E. A. Regional-scale scenario analysis for the Meso-American Reef system: modelling coral reef futures under multiple stressors. Ecol. Modell. 222, 1756–1770 (2011).
Wolanski, E., Richmond, R. H. & McCook, L. A model of the effects of land-based, human activities on the health of coral reefs in the Great Barrier Reef and in Fouha Bay, Guam, Micronesia. J. Mar. Syst. 46, 133–144 (2004).
Eakin, C. M. A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull. Mar. Sci. 69, 171–186 (2001).
Eakin, C. M. Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982-1983 El Niño at Uva Island in the eastern Pacific. Coral Reefs 15, 109–119 (1996).
Edwards, H. J. et al. How much time can herbivore protection buy for coral reefs under realistic regimes of hurricanes and coral bleaching? Glob. Change Biol. 17, 2033–2048 (2011).
Mongin, M. & Baird, M. The interacting effects of photosynthesis, calcification and water circulation on carbon chemistry variability on a coral reef flat: a modelling study. Ecol. Modell. 284, 19–34 (2014).
Kleypas, J. A. Modeled estimates of global reef habitat and carbonate production since the last glacial maximum. Paleoceanography 12, 533–545 (1997).
Weijerman, M., Fulton, E. A. & Parrish, F. A. Comparison of coral reef ecosystems along a fishing pressure gradient. PLoS ONE 8, e63797 (2013).
Weijerman, M. et al. An integrated coral reef ecosystem model to support resource management under a changing climate. PLoS ONE 10, e0144165 (2015).
Baskett, M. L., Nisbet, R. M., Kappel, C. V., Mumby, P. J. & Gaines, S. D. Conservation management approaches to protecting the capacity for corals to respond to climate change: a theoretical comparison. Glob. Change Biol. 16, 1229–1246 (2010).
Skerratt, J. H. et al. Simulated nutrient and plankton dynamics in the Great Barrier Reef (2011–2016). J. Mar. Syst. 192, 51–74 (2019).
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Hennige, S. J. et al. Using the Goldilocks Principle to model coral ecosystem engineering. Proc. R. Soc. Lond. B 288, 20211260 (2021).
Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).
Kraines, S., Suzuki, Y., Yamada, K. & Komiyama, H. Separating biological and physical changes in dissolved oxygen concentration in a coral reef. Limnol. Oceanogr. 41, 1790–1799 (1996).
Lima, L. F. O. et al. Modeling of the coral microbiome: the influence of temperature and microbial network. MBio 11, https://doi.org/10.1128/mbio.02691-19 (2020).
McClanahan, T. R. et al. Prioritizing key resilience indicators to support coral reef management in a changing climate. PLoS ONE 7, e42884 (2012).
McDonald, R. A. et al. Zigzag persistence for coral reef resilience using a stochastic spatial model. J. R. Soc. Interface 20, 20230280 (2023).
Liu, P.-J. et al. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Mar. Environ. Res. 68, 106–117 (2009).
Mumby, P. J., Hedley, J. D., Zychaluk, K., Harborne, A. R. & Blackwell, P. G. Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: fresh insights on resilience from a simulation model. Ecol. Modell. 196, 131–148 (2006).
Holmes, G. & Johnstone, R. W. Modelling coral reef ecosystems with limited observational data. Ecol. Modell. 221, 1173–1183 (2010).
Houk, P., Cuetos-Bueno, J., Kerr, A. M. & McCann, K. Linking fishing pressure with ecosystem thresholds and food web stability on coral reefs. Ecol. Monogr. 88, 109–119 (2018).
Meesters, E. H., Bak, R. P. M., Westmacott, S., Ridgley, M. & Dollar, S. A fuzzy logic model to predict coral reef development under nutrient and sediment stress. Conserv. Biol. 12, 957–965 (1998).
Gustafsson, M. S. M., Baird, M. E. & Ralph, P. J. The interchangeability of autotrophic and heterotrophic nitrogen sources in Scleractinian coral symbiotic relationships: a numerical study. Ecol. Modell. 250, 183–194 (2013).
Gustafsson, M. S. M., Baird, M. E. & Ralph, P. J. Modeling photoinhibition-driven bleaching in Scleractinian coral as a function of light, temperature, and heterotrophy. Limnol. Oceanogr. 59, 603–622 (2014).
Mongin, M. et al. The exposure of the Great Barrier Reef to ocean acidification. Nat. Commun. 7, 10732 (2016).
Baird, M. E. et al. A mechanistic model of coral bleaching due to temperature-mediated light-driven reactive oxygen build-up in zooxanthellae. Ecol. Modell. 386, 20–37 (2018).
Baird, M. E. et al. Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: comparison with satellite data. Environ. Model. Softw. 78, 79–96 (2016).
Melbourne-Thomas, J. et al. A multi-scale biophysical model to inform regional management of coral reefs in the western Philippines and South China Sea. Environ. Model. Softw. 26, 66–82 (2011).
Carturan, B. S., Pither, J., Maréchal, J. P., Bradshaw, C. J. A. & Parrott, L. Combining agent-based, trait-based and demographic approaches to model coral-community dynamics. eLife 9, e55993 (2020).
McClanahan, T. R. A coral reef ecosystem-fisheries model: impacts of fishing intensity and catch selection on reef structure and processes. Ecol. Modell. 80, 1–19 (1995).
Madin, J. S. & Connolly, S. R. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444, 477–480 (2006).
Brown, C. J. et al. Tracing the influence of land-use change on water quality and coral reefs using a Bayesian model. Sci. Rep. 7, 4740 (2017).
De’ath, G. & Fabricius, K. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol. Appl. 20, 840–850 (2010).
Bozec, Y. M. & Mumby, P. J. Synergistic impacts of global warming on the resilience of coral reefs. Phil. Trans. R. Soc. Lond. B 370, 20130267 (2015).
Anderson, T. R. & Ducklow, H. W. Microbial loop carbon cycling in ocean environments studied using a simple steady-state model. Aquat. Microb. Ecol. 26, 37–49 (2001).
Cherabier, P. & Ferrière, R. Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production. ISME J. 16, 1130–1139 (2022).
Hasumi, H. & Nagata, T. Modeling the global cycle of marine dissolved organic matter and its influence on marine productivity. Ecol. Modell. 288, 9–24 (2014).
Jost, C. et al. The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model. Theor. Popul. Biol. 66, 37–51 (2004).
De Laender, F., Van Oevelen, D., Soetaert, K. & Middelburg, J. J. Carbon transfer in herbivore-and microbial loop-dominated pelagic food webs in the southern Barents Sea during spring and summer. Mar. Ecol. Prog. Ser. 398, 93–107 (2010).
Polimene, L., Allen, J. I. & Zavatarelli, M. Model of interactions between dissolved organic carbon and bacteria in marine systems. Aquat. Microb. Ecol. 43, 127–138 (2006).
Madin, J. S., Hughes, T. P. & Connolly, S. R. Calcification, storm damage and population resilience of tabular corals under climate change. PLoS ONE 7, e46637 (2012).
Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).
Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918 (2013).
Kubicek, A. & Reuter, H. Mechanics of multiple feedbacks in benthic coral reef communities. Ecol. Modell. 329, 29–40 (2016).
Niquil, N., Jackson, G. A., Legendre, L. & Delesalle, B. Inverse model analysis of the planktonic food web of Takapoto Atoll (French Polynesia). Mar. Ecol. Prog. Ser. 165, 17–29 (1998).
Palmer, J. R. & Totterdell, I. J. Production and export in a global ocean ecosystem model. Deep Sea Res. Part I Oceanogr. Res. Pap. 48, 1169–1198 (2001).
Alderdice, R. et al. Deoxygenation lowers the thermal threshold of coral bleaching. Sci. Rep. 12, 18273 (2022).
Haas, A. F., Smith, J. E., Thompson, M. & Deheyn, D. D. Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae. PeerJ 2, e235 (2014).
Bergstrom, E. et al. Inorganic carbon uptake strategies in coralline algae: plasticity across evolutionary lineages under ocean acidification and warming. Mar. Environ. Res. 161, 105107 (2020).
Fabricius, K. E., Kluibenschedl, A., Harrington, L., Noonan, S. & De’ath, G. In situ changes of tropical crustose coralline algae along carbon dioxide gradients. Sci. Rep. 5, 9537 (2015).
Dutra, E., Koch, M., Peach, K. & Manfrino, C. Tropical crustose coralline algal individual and community responses to elevated pCO2 under high and low irradiance. ICES J. Mar. Sci. 73, 803–813 (2016).
De Goeij, J. M., Van Den Berg, H., Van Oostveen, M. M., Epping, E. H. G. & Van Duyl, F. C. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357, 139–151 (2008).
Allison, N., Cohen, I., Finch, A. A., Erez, J. & Tudhope, A. W. Corals concentrate dissolved inorganic carbon to facilitate calcification. Nat. Commun. 5, 5741 (2014).
Wilson, R. W. et al. Contribution of fish to the marine inorganic carbon cycle. Science 323, 359–362 (2009).
Wild, C., Niggl, W., Naumann, M. S. & Haas, A. F. Organic matter release by Red Sea coral reef organisms-Potential effects on microbial activity and in situ O2 availability. Mar. Ecol. Prog. Ser. 411, 61–71 (2010).
Acknowledgements
We thank H. Maughan, R. Hanna, T. Roach, W. Barnes, L. ter Horst, E. Nixon and B. Darby for their comments, suggestions and stimulating discussions in the writing of this article. Sections of this work also appear as the fifth chapter in J.L.B.’s doctoral dissertation, titled Coral Reef Arks: Molecular Mechanisms Underlying the Demise and Recovery of Coral Reef Ecosystems80. J.L.B. was the primary investigator and author of this Perspective.
Author information
Authors and Affiliations
Contributions
F.R., A.C.H. and J.L.B. contributed equally to the conceptualization of the ideas in this Perspective. J.L.B. wrote the paper. F.R. and A.C.H. contributed to edits and revisions.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks Tries Razak, David Suggett and Gareth Williams for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Table 1 and reference list for the 100 modelling studies used to generate Fig. 4.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Baer, J.L., Hartmann, A.C. & Rohwer, F. A control theory framework and in situ experimental platform for informing restoration of coral reefs. Nat Ecol Evol (2025). https://doi.org/10.1038/s41559-025-02741-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41559-025-02741-4