Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Poly(carboxybetaine) lipids enhance mRNA therapeutics efficacy and reduce their immunogenicity

Abstract

Messenger RNA (mRNA) therapeutics are a promising strategy to combat diverse diseases. Traditional lipid nanoparticle (LNP) formulations for mRNA delivery contain poly(ethylene) glycol (PEG), a polymer widely used in drug delivery carriers but that recently has been associated with efficacy and immunogenicity concerns. Here we report poly(carboxybetaine) (PCB) lipids as surrogates for PEG-lipids used in mRNA formulations. In vitro studies with immortalized and primary cells show that PCB-containing LNPs have higher mRNA transfection efficiency than PEG-containing LNPs across different formulations. Moreover, primary cell engineering and in vivo immunization studies in mice further demonstrate greater therapeutic efficacy of PCB-containing LNPs over their PEG counterparts. Mechanistic assays show that this improvement is attributed to enhanced endosomal escape of PCB-containing LNPs. These formulations exhibit a safe immunotoxicity profile and effectively mitigate the accelerated blood clearance effect that has been observed for PEG-containing LNPs, enabling repeated administrations without efficacy loss. Overall, these findings highlight PCB-containing LNPs as a potent and safe mRNA delivery platform for clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and in vitro evaluations of PCB-containing LNPs.
Fig. 2: PCB-LNPs show higher transfection efficiency than PEG-LNPs across different formulations.
Fig. 3: PCB-LNPs outperform PEG-LNPs in various therapeutic applications.
Fig. 4: Mechanistic assays show an enhanced endosomal escape efficiency by PCB-LNPs.
Fig. 5: PCB-LNPs exhibit a safe immunogenicity profile.

Similar content being viewed by others

Data availability

All data in this study are available within the Article and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on request. Source data are provided with this paper.

References

  1. Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mullard, A. COVID-19 vaccine success enables a bolder vision for mRNA cancer vaccines, says BioNTech CEO. Nat. Rev. Drug Discov. 20, 500–501 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int. J. Pharm. 601, 120586 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, P., Sun, F., Liu, S. & Jiang, S. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control. Release 244, 184–193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar, V. et al. Shielding of lipid nanoparticles for siRNA delivery: impact on physicochemical properties, cytokine induction, and efficacy. Mol. Ther. Nucleic Acids 3, e210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yang, Q. et al. Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal. Chem. 88, 11804–11812 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Besin, G. et al. Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties. Immunohorizons 3, 282–293 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Sanchez, A. et al. Substituting poly(ethylene glycol) lipids with poly(2-ethyl-2-oxazoline) lipids improves lipid nanoparticle repeat dosing. Adv. Health. Mater. 13, e2304033 (2024).

    Article  Google Scholar 

  12. Ju, Y. et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 16, 11769–11780 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Vrieze, J. Suspicions grow that nanoparticles in Pfizer’s COVID-19 vaccine trigger rare allergic reactions. Science https://www.science.org/content/article/suspicions-grow-nanoparticles-pfizer-s-covid-19-vaccine-trigger-rare-allergic-reactions (21 December 2020).

  14. Kang, D. D. et al. Engineering LNPs with polysarcosine lipids for mRNA delivery. Bioact. Mater. 37, 86–93 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nogueira, S. S. et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery. ACS Appl. Nano Mater. 3, 10634–10645 (2020).

    Article  CAS  Google Scholar 

  16. Cao, Z., Zhang, L. & Jiang, S. Superhydrophilic zwitterionic polymers stabilize liposomes. Langmuir 28, 11625–11632 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Li, Y. et al. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. J. Control. Release 176, 104–114 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Li, Q. et al. Zwitterionic biomaterials. Chem. Rev. 122, 17073–17154 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Li, B. et al. Zwitterionic nanocages overcome the efficacy loss of biologic drugs. Adv. Mater. 30, e1705728 (2018).

    Article  PubMed  Google Scholar 

  20. Keefe, A. J. & Jiang, S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem. 4, 59–63 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, B. et al. Revealing the immunogenic risk of polymers. Angew. Chem. Int. Ed. 57, 13873–13876 (2018).

    Article  CAS  Google Scholar 

  22. Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265–291 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar, A. R. K., Shou, Y., Chan, B., L, K. & Tay, A. Materials for improving immune cell transfection. Adv. Mater. 33, e2007421 (2021).

    Article  PubMed  Google Scholar 

  25. Patel, S. et al. Beyond CAR T cells: other cell-based immunotherapeutic strategies against cancer. Front. Oncol. 9, 196 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jahan, F. et al. Using the Jurkat reporter T cell line for evaluating the functionality of novel chimeric antigen receptors. Front. Mol. Med. 3, 1070384 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chang, Y. et al. CAR-neutrophil mediated delivery of tumor-microenvironment responsive nanodrugs for glioblastoma chemo-immunotherapy. Nat. Commun. 14, 2266 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Kreiter, S. et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J. Immunol. 180, 309–318 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Yanez Arteta, M. et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Aburai, K., Hatanaka, K., Takano, S., Fujii, S. & Sakurai, K. Characterizing an siRNA-containing lipid-nanoparticle prepared by a microfluidic reactor: small-angle X-ray scattering and cryotransmission electron microscopic studies. Langmuir 36, 12545–12554 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cornebise, M. et al. Discovery of a novel amino lipid that improves lipid nanoparticle performance through specific interactions with mRNA. Adv. Funct. Mater. 32, 2106727 (2022).

    Article  CAS  Google Scholar 

  36. Leung, A. K. et al. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J. Phys. Chem. C 116, 18440–18450 (2012).

    Article  CAS  Google Scholar 

  37. Cheng, M. H. Y. et al. Induction of bleb structures in lipid nanoparticle formulations of mRNA leads to improved transfection potency. Adv. Mater. 35, e2303370 (2023).

    Article  PubMed  Google Scholar 

  38. Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sedic, M. et al. Safety evaluation of lipid nanoparticle-formulated modified mRNA in the Sprague-Dawley rat and cynomolgus monkey. Vet. Pathol. 55, 341–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Vlatkovic, I. Non-immunotherapy application of LNP-mRNA: maximizing efficacy and safety. Biomedicines 9, 530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang, F. et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol. Ther. 25, 2635–2647 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaudhary, N. et al. Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nat. Biomed. Eng 8, 1483–1498 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Schlich, M. et al. Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles. Bioeng Transl. Med. 6, e10213 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bruininks, B. M., Souza, P. C., Ingolfsson, H. & Marrink, S. J. A molecular view on the escape of lipoplexed DNA from the endosome. eLife 9, e52012 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, S. & Jiang, S. Zwitterionic polymer-protein conjugates reduce polymer-specific antibody response. Nano Today 11, 285–291 (2016).

    Article  CAS  Google Scholar 

  46. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Henderson, J. M. et al. Cap 1 messenger RNA synthesis with co-transcriptional CleanCap® analog by in vitro transcription. Curr. Protoc. 1, e39 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Nance, K. D. & Meier, J. L. Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent. Sci. 7, 748–756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hopkins, J. B., Gillilan, R. E. & Skou, S. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J. Appl. Crystallogr. 50, 1545–1553 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luozhong, S. et al. Phosphatidylserine lipid nanoparticles promote systemic RNA delivery to secondary lymphoid organs. Nano Lett. 22, 8304–8311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nelson, J. et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 6, eaaz6893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baiersdorfer, M. et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 15, 26–35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Institute of Allergy and Infectious Diseases (NIAID R01AI178125-01), the National Cancer Institute (NCI U54 CA272688), Robert Langer ’70 Family and Friends Professorship and Cornell NEXT Nano Initiative. Animal IVIS images were acquired through the Cornell Institute of Biotechnology’s Imaging Facility under support of the National Institutes of Health (NIH S10OD025049). The cryo-EM analysis was performed at the State University of New York College for Environmental Science and Forestry Analytical & Technical Services facility. S.W. performed the cryo-EM analysis and is supported by NIH (R35 GM141908). M.G. and S. Lipkin provided guidance and support in the hPBMC experiments and are supported by NCI U54 CA272688 and NIAID R01AI178125-01. BioSAXS experiments were conducted at the Center for High-Energy X-ray Sciences (CHEXS) at Cornell University, which is supported by the National Science Foundation (BIO, ENG and MPS Directorates) under award no. DMR-1829070, and the Macromolecular Diffraction at Cornell High Energy Synchrotron Source (MacCHESS) facility at Cornell University, which is supported by the National Science Foundation (NSF DMR-1829070), and the Macromolecular Diffraction at CHESS (MacCHESS) facility at Cornell University, which is supported by award NIH (1-P30-GM124166-01A1), and by New York State’s Empire State Development Corporation (NYSTAR). We also acknowledge generous assistance from R. Gillilan on the data collection of BioSAXS experiments. Finally, this work also made use of the Cornell University NMR Facility, which is supported, in part, by the NSF through MRI award CHE-1531632.

Author information

Authors and Affiliations

Authors

Contributions

S. Luozhong and S.J. conceptualized and designed this study. S. Luozhong, P.L. and Z.Y. performed the chemical synthesis and characterization. S. Luozhong, R. Li, E.D., Y.C. and K.M. performed the in vitro and in vivo experiments. S. Luozhong, R. Li, Y.H., Z.C., M.C., C.M., D.B., P.Z. and Y.M. performed the molecular biology experiments and biological assays. S. Luozhong, R. Li, P.L., Y.C., C.M., A.K. and R. Lai performed the LNP characterizations. S.W. performed the cyro-EM imaging. S. Luozhong, M.G. and S. Lipkin performed the hPBMC experiments. R. Li supervised and performed the experiments during the peer review process. S. Luozhong and S.J. wrote the paper, and all authors discussed and commented on it.

Corresponding author

Correspondence to Shaoyi Jiang.

Ethics declarations

Competing interests

S. Luozhong, P.L., Z.Y. and S.J. are authors of a patent application related to this work (PCT/US2021/064639) filed by Cornell University in the United States. S. Luozhong, R. Li, P.L. and S.J. are authors of a patent related to this work (PCT/US2024/048135) filed by Cornell University in the United States. The other authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Camilla Foged, Liangfang Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–38, Tables 1–3 and Methods.

Reporting Summary

Supplementary Data

Source data for the Supplementary Figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luozhong, S., Liu, P., Li, R. et al. Poly(carboxybetaine) lipids enhance mRNA therapeutics efficacy and reduce their immunogenicity. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02240-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research