Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hallmark discoveries in the biology of non-Wilms tumour childhood kidney cancers

Abstract

Approximately 20% of paediatric and adolescent/young adult patients with renal tumours are diagnosed with non-Wilms tumour, a broad heterogeneous group of tumours that includes clear-cell sarcoma of the kidney, congenital mesoblastic nephroma, malignant rhabdoid tumour of the kidney, renal-cell carcinoma, renal medullary carcinoma and other rare histologies. The differential diagnosis of these tumours dates back many decades, when these pathologies were identified initially through clinicopathological observation of entities with outcomes that diverged from Wilms tumour, corroborated with immunohistochemistry and molecular cytogenetics and, subsequently, through next-generation sequencing. These advances enabled near-definitive recognition of different tumours and risk stratification of patients. In parallel, the generation of new renal-tumour models of some of these pathologies including cell lines, organoids, xenografts and genetically engineered mouse models improved our understanding of the development of these tumours and have facilitated the identification of new therapeutic targets. Despite these many achievements, paediatric and adolescent/young adult patients continue to die from such rare cancers at higher rates than patients with Wilms tumour. Thus, international coordinated efforts are needed to answer unresolved questions and improve outcomes.

Key points

  • Non-Wilms tumours occur in ~20% of paediatric and adolescent/young adult patients with kidney cancers, and advances in next-generation sequencing have brought clarity to this group of rare and hard-to-treat cancers.

  • Translocation renal-cell carcinomas are primarily driven by translocations involving the MiT family members TFE3, TFEB and ELOC. A growing number of cell lines and patient-derived xenograft (PDX) models are available for these tumours, but genetically modified mouse models remain a gap in the field.

  • Renal medullary carcinomas are characterized by a biallelic loss of SMARCB1 and generally include a disruptive balanced translocation of one SMARCB1 allele. Robust models of renal medullary carcinomas (such as cell lines, organoids and PDXs) are now available or actively being developed.

  • Malignant rhabdoid tumours of the kidney are driven by biallelic loss of SMARCB1 and, to a lesser extent, SMARCA4. Here, there are a relatively large number of cell lines, organoids, PDX and genetically modified mouse models that are available for these tumours, which led to identification of several potential therapeutic targets.

  • Clear-cell sarcoma of the kidney, congenital mesoblastic nephromas and most of the other paediatric and adolescent and young adult non-Wilms renal tumours are driven by alterations in BCOR, EGFR, DICER1, BRAF and TSC1 or TSC2, along with gene fusions involving EWSR and NTRK. This group of tumours is in need of preclinical models. International collaborations will lead to the establishment of these models and the development of functional studies to facilitate the identification of therapeutic targets, ultimately resulting in informed clinical trials and improved outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular and histological advances in the study of translocation renal-cell carcinomas.
Fig. 2: Molecular and histological advances in the study of renal medullary carcinoma.
Fig. 3: Molecular and histological advances in the study of malignant rhabdoid tumour of the kidney.
Fig. 4: Molecular and histological advances in the study of clear-cell sarcoma of the kidney.
Fig. 5: Molecular and histological advances in the study of congenital mesoblastic nephroma.
Fig. 6: Histology of other non-Wilms renal tumours.

Similar content being viewed by others

References

  1. Wilms, M. Die Mischgeschwülste der Niere. (Verlag von Arthur Georgi, 1899).

  2. Knudson, A. G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Knudson, A. G. & Strong, L. C. Mutation and cancer: a model for Wilms’ tumor of the kidney. J. Natl Cancer Inst. 48, 313–324 (1972).

    PubMed  Google Scholar 

  4. Perotti, D. et al. Hallmark discoveries in the biology of Wilms tumour. Nat. Rev. Urol. 21, 158–180 (2024).

  5. 46th Congress of The International Society of Paediatric Oncology (SIOP) 2014 Toronto, Canada, 22nd –25th October, 2014 SIOP Abstracts. Pediatr. Blood Cancer 61, S105–S433 (2014).

  6. WHO Classification of Tumours Editorial Board. Urinary and Male Genital Tumours. (International Agency for Research on Cancer, 2022).

  7. Cajaiba, M. M. et al. The classification of pediatric and young adult renal cell carcinomas registered on the Children’s Oncology Group (COG) protocol AREN03B2 after focused genetic testing. Cancer 124, 3381–3389 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Spreafico, F. Paediatrics: towards evidence-based management of paediatric RCC. Nat. Rev. Urol. 12, 426–428 (2015).

    Article  PubMed  Google Scholar 

  9. Denize, T. et al. Renal cell carcinoma in children and adolescents: a retrospective study of a French–Italian series of 93 cases. Histopathology 80, 928–945 (2022).

    Article  PubMed  Google Scholar 

  10. Argani, P. Translocation carcinomas of the kidney. Genes. Chromosomes Cancer 61, 219–227 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Cimadamore, A. et al. Towards a new WHO classification of renal cell tumor: what the clinician needs to know-a narrative review. Transl. Androl. Urol. 10, 1506–1520 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sun, G. et al. Integrated exome and RNA sequencing of TFE3-translocation renal cell carcinoma. Nat. Commun. 12, 5262 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Linehan, W. M. & Ricketts, C. J. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. Nat. Rev. Urol. 16, 539–552 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Bakouny, Z. et al. Integrative clinical and molecular characterization of translocation renal cell carcinoma. Cell Rep. 38, 110190 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Argani, P. MiT family translocation renal cell carcinoma. Semin. Diagn. Pathol. 32, 103–113 (2015).

    Article  PubMed  Google Scholar 

  16. Gandhi, J. S., Malik, F., Amin, M. B., Argani, P. & Bahrami, A. MiT family translocation renal cell carcinomas: a 15th anniversary update. Histol. Histopathol. 35, 125–136 (2020).

    CAS  PubMed  Google Scholar 

  17. Tretiakova, M. S. Chameleon TFE3-translocation RCC and how gene partners can change morphology: accurate diagnosis using contemporary modalities. Adv. Anat. Pathol. 29, 131–140 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Marcon, J. et al. Comprehensive genomic analysis of translocation renal cell carcinoma reveals copy-number variations as drivers of disease progression. Clin. Cancer Res. 26, 3629–3640 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Argani, P. et al. A distinctive pediatric renal neoplasm characterized by epithelioid morphology, basement membrane production, focal HMB45 immunoreactivity, and t(6;11)(p21.1;q12) chromosome translocation. Am. J. Pathol. 158, 2089–2096 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moch, H. et al. The 2022 World Health Organization classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur. Urol. 82, 458–468 (2022).

    Article  PubMed  Google Scholar 

  21. Wei, S., Testa, J. R. & Argani, P. A review of neoplasms with MITF/MiT family translocations. Histol. Histopathol. 37, 311–321 (2022).

    CAS  PubMed  Google Scholar 

  22. Argani, P. et al. TFEB-amplified renal cell carcinomas: an aggressive molecular subset demonstrating variable melanocytic marker expression and morphologic heterogeneity. Am. J. Surg. Pathol. 40, 1484–1495 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alhalabi, O. et al. Immune checkpoint therapy combinations in adult advanced MiT family translocation renal cell carcinomas. Oncologist 28, 433–439 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kauffman, E. C. et al. Preclinical efficacy of dual mTORC1/2 inhibitor AZD8055 in renal cell carcinoma harboring a TFE3 gene fusion. BMC Cancer 19, 917 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ishiguro, M., Iwasaki, H., Ohjimi, Y. & Kaneko, Y. Establishment and characterization of a renal cell carcinoma cell line (FU-UR-1) with the reciprocal ASPL-TFE3 fusion transcript. Oncol. Rep. 11, 1169–1175 (2004).

    CAS  PubMed  Google Scholar 

  26. Calandrini, C. et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat. Commun. 11, 1310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baba, M. et al. TFE3 Xp11.2 translocation renal cell carcinoma mouse model reveals novel therapeutic targets and identifies GPNMB as a diagnostic marker for human disease. Mol. Cancer Res. 17, 1613–1626 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Argani, P. et al. Translocation carcinomas of the kidney after chemotherapy in childhood. J. Clin. Oncol. 24, 1529–1534 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, Y.-B. Update on selected high-grade renal cell carcinomas of the kidney: FH-deficient, ALK-rearranged, and medullary carcinomas. Adv. Anat. Pathol. 31, 118–125 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Bezwada, D. & Brugarolas, J. Reporting on FH-deficient renal cell carcinoma using circulating succinylated metabolites. J. Clin. Invest. 133, e170195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kiuru, M. et al. Familial cutaneous leiomyomatosis is a two-hit condition associated with renal cell cancer of characteristic histopathology. Am. J. Pathol. 159, 825–829 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Geller, J. I. et al. Characterization of adolescent and pediatric renal cell carcinoma: a report from the Children’s Oncology Group study AREN03B2. Cancer 121, 2457–2464 (2015).

    Article  PubMed  Google Scholar 

  33. Beckermann, K. E. et al. Renal medullary carcinoma: establishing standards in practice. J. Oncol. Pract. 13, 414–421 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baniak, N., Tsai, H. & Hirsch, M. S. The differential diagnosis of medullary-based renal masses. Arch. Pathol. Lab. Med. 145, 1148–1170 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Bahadoram, S. et al. Renal cell carcinoma: an overview of the epidemiology, diagnosis, and treatment. G. Ital. Nefrol. 39, 2022–vol3 (2022).

    PubMed  Google Scholar 

  36. Davis, C. J. Jr, Mostofi, F. K. & Sesterhenn, I. A. Renal medullary carcinoma. The seventh sickle cell nephropathy. Am. J. Surg. Pathol. 19, 1–11 (1995).

    Article  PubMed  Google Scholar 

  37. Avery, R. A. et al. Renal medullary carcinoma: clinical and therapeutic aspects of a newly described tumor. Cancer 78, 128–132 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Shah, A. Y. et al. Management and outcomes of patients with renal medullary carcinoma: a multicentre collaborative study. BJU Int. 120, 782–792 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Msaouel, P., Tannir, N. M. & Walker, C. L. A model linking sickle cell hemoglobinopathies and SMARCB1 loss in renal medullary carcinoma. Clin. Cancer Res. 24, 2044–2049 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Alvarez, O., Rodriguez, M. M., Jordan, L. & Sarnaik, S. Renal medullary carcinoma and sickle cell trait: a systematic review. Pediatr. Blood Cancer 62, 1694–1699 (2015).

    Article  PubMed  Google Scholar 

  41. Cheng, J. X. et al. Renal medullary carcinoma: rhabdoid features and the absence of INI1 expression as markers of aggressive behavior. Mod. Pathol. 21, 647–652 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Hong, A. L. et al. Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition. eLife 8, e44161 (2019).

  43. Su, Y. & Hong, A. L. Recent advances in renal medullary carcinoma. Int. J. Mol. Sci. 23, 7097 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Colombo, P. et al. Unclassified renal cell carcinoma with medullary phenotype versus renal medullary carcinoma: lessons from diagnosis in an Italian man found to harbor sickle cell trait. Urol. Case Rep. 3, 215–218 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Amin, M. B. et al. Collecting duct carcinoma versus renal medullary carcinoma: an appeal for nosologic and biological clarity. Am. J. Surg. Pathol. 38, 871–874 (2014).

    Article  PubMed  Google Scholar 

  46. van der Beek, J. N. et al. A pediatric and young adult case of unclassified renal cell carcinoma with medullary phenotype (RCCU-MP): clinical course and treatment. J. Onco-Nephrol. 8, 49–57 (2024).

    Article  Google Scholar 

  47. van der Beek, J. N. et al. MRI characteristics of pediatric renal tumors: a SIOP-RTSG radiology panel Delphi study. J. Magn. Reson. Imaging 55, 543–552 (2022).

    Article  PubMed  Google Scholar 

  48. Jackson, T. J. et al. How we approach paediatric renal tumour core needle biopsy in the setting of preoperative chemotherapy: a review from the SIOP Renal Tumour Study Group. Pediatr. Blood Cancer 69, e29702 (2022).

    Article  PubMed  Google Scholar 

  49. Beek, J. Nvander et al. MRI characteristics of pediatric and young-adult renal cell carcinoma: a single-center retrospective study and literature review. Cancers 15, 1401 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Walsh, A., Kelly, D. R., Vaid, Y. N., Hilliard, L. M. & Friedman, G. K. Complete response to carboplatin, gemcitabine, and paclitaxel in a patient with advanced metastatic renal medullary carcinoma. Pediatr. Blood Cancer 55, 1217–1220 (2010).

    Article  PubMed  Google Scholar 

  51. Strouse, J. J. et al. Significant responses to platinum-based chemotherapy in renal medullary carcinoma. Pediatr. Blood Cancer 44, 407–411 (2005).

    Article  PubMed  Google Scholar 

  52. Tan, K.-T. et al. Haplotype-resolved germline and somatic alterations in renal medullary carcinomas. Genome Med. 13, 114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Calderaro, J. et al. Balanced translocations disrupting SMARCB1 are hallmark recurrent genetic alterations in renal medullary carcinomas. Eur. Urol. 69, 1055–1061 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Bratslavsky, G. et al. Comprehensive genomic profiling of metastatic collecting duct carcinoma, renal medullary carcinoma, and clear cell renal cell carcinoma. Urol. Oncol. 39, 367.e1–367.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Tsuzuki, S. et al. A case of renal cell carcinoma unclassified with medullary phenotype without detectable gene deletion. Pathol. Int. 69, 710–714 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Q. et al. Renal medullary carcinoma: molecular, immunohistochemistry, and morphologic correlation. Am. J. Surg. Pathol. 37, 368–374 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Stahlschmidt, J., Cullinane, C., Roberts, P. & Picton, S. V. Renal medullary carcinoma: prolonged remission with chemotherapy, immunohistochemical characterisation and evidence of bcr/abl rearrangement. Med. Pediatr. Oncol. 33, 551–557 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Msaouel, P. et al. Comprehensive molecular characterization identifies distinct genomic and immune hallmarks of renal medullary carcinoma. Cancer Cell 37, 720–734.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wei, D. et al. Novel renal medullary carcinoma cell lines, UOK353 and UOK360, provide preclinical tools to identify new therapeutic treatments. Genes. Chromosomes Cancer 59, 472–483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carugo, A. et al. p53 is a master regulator of proteostasis in SMARCB1-deficient malignant rhabdoid tumors. Cancer Cell 35, 204–220.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Msaouel, P. et al. Updated recommendations on the diagnosis, management, and clinical trial eligibility criteria for patients with renal medullary carcinoma. Clin. Genitourin. Cancer 17, 1–6 (2019).

    Article  PubMed  Google Scholar 

  62. Gangireddy, V., Liles, G. B., Sostre, G. D. & Coleman, T. Response of metastatic renal medullary carcinoma to carboplatinum and paclitaxel chemotherapy. Clin. Genitourin. Cancer 10, 134–139 (2012).

    Article  PubMed  Google Scholar 

  63. Wilson, N. R. et al. Efficacy and safety of gemcitabine plus doxorubicin in patients with renal medullary carcinoma. Clin. Genitourin. Cancer 19, e401–e408 (2021).

    Article  PubMed  Google Scholar 

  64. Amjad, A. I. et al. Renal medullary carcinoma: case report of an aggressive malignancy with near-complete response to dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin chemotherapy. Case Rep. Oncol. Med. 2014, 615895 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Carden, M. A. et al. Platinum plus bortezomib for the treatment of pediatric renal medullary carcinoma: two cases. Pediatr. Blood Cancer 64, e26402 (2017).

  66. Ryan, A., Tawagi, K., VanderVeen, N., Matrana, M. & Vasquez, R. Combination therapy with bortezomib in renal medullary carcinoma: a case series. Clin. Genitourin. Cancer 19, e395–e400 (2021).

    Article  PubMed  Google Scholar 

  67. Beckermann, K. E. et al. Clinical and immunologic correlates of response to PD-1 blockade in a patient with metastatic renal medullary carcinoma. J. Immunother. Cancer 5, 1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chi, S. N. et al. Tazemetostat for tumors harboring SMARCB1/SMARCA4 or EZH2 alterations: results from NCI-COG pediatric MATCH APEC1621C. J. Natl Cancer Inst. 115, 1355–1363 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ruiz-Cordero, R. et al. Hybrid oncocytic/chromophobe renal tumors are molecularly distinct from oncocytoma and chromophobe renal cell carcinoma. Mod. Pathol. 32, 1698–1707 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Mayr, J. A. et al. Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin. Cancer Res. 14, 2270–2275 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Joshi, S. et al. The genomic landscape of renal oncocytoma identifies a metabolic barrier to tumorigenesis. Cell Rep. 13, 1895–1908 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Durinck, S. et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet. 47, 13–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Abualjadayel, M. H. et al. A rare benign tumor in a 14-year-old girl. Case Rep. Nephrol. 2018, 1548283 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Speer, S., Wiseman, D., Moussa, M. & Bütter, A. Renal oncocytosis in a pediatric patient: case report and review of the literature. J. Pediatr. Surg. Case Rep. 3, 481–484 (2015).

    Article  Google Scholar 

  75. Wei, X., Wang, Y., Fang, Y. & Chen, L. Renal oncocytoma in a 13-year-old girl: a case report and literature review. Indian J. Pathol. Microbiol. 66, 868–870 (2023).

    Article  PubMed  Google Scholar 

  76. Waisman, J. & Löwhagen, T. Oncocytic renal tubular adenoma (so-called oncocytoma) in seventeen-year-old girl. Urology 36, 449–451 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Suherman, S. et al. Multiple renal oncocytoma and bilateral cystic kidney. Eur. J. Pediatr. 144, 406–409 (1985).

    Article  CAS  PubMed  Google Scholar 

  78. Seyedzadeh, A., Parashar, K., Raafat, F., Alton, H. M. & Milford, D. V. Bilateral multifocal renal oncocytoma. Pediatr. Nephrol. 18, 1286–1288 (2003).

    Article  PubMed  Google Scholar 

  79. Ciftci, A. O. et al. Renal oncocytoma: diagnostic and therapeutic aspects. J. Pediatr. Surg. 35, 1396–1398 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Gibson, A. & Ray, A. Rare case of hybrid oncocytoma and chromophobe renal cell carcinoma in a pediatric patient. Pediatr. Blood Cancer 63, 1127 (2016).

    Article  PubMed  Google Scholar 

  81. Kesik, V. et al. A rare type of renal cell carcinoma in a girl: hybrid renal cell carcinoma. Pediatr. Hematol. Oncol. 27, 228–232 (2010).

    Article  PubMed  Google Scholar 

  82. Beckwith, J. B. & Palmer, N. F. Histopathology and prognosis of Wilms tumors: results from the First National Wilms’ Tumor Study. Cancer 41, 1937–1948 (1978).

    Article  CAS  PubMed  Google Scholar 

  83. Haas, J. E., Palmer, N. F., Weinberg, A. G. & Beckwith, J. B. Ultrastructure of malignant rhabdoid tumor of the kidney: a distinctive renal tumor of children. Hum. Pathol. 12, 646–657 (1981).

    Article  CAS  PubMed  Google Scholar 

  84. Custers, L. et al. Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours. Nat. Commun. 12, 1407 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Weeks, D. A., Beckwith, J. B., Mierau, G. W. & Luckey, D. W. Rhabdoid tumor of kidney. A report of 111 cases from the National Wilms’ Tumor Study Pathology Center. Am. J. Surg. Pathol. 13, 439–458 (1989).

    Article  CAS  PubMed  Google Scholar 

  86. Van Den Heuvel‐Eibrink, M. M. et al. Malignant rhabdoid tumours of the kidney (MRTKs), registered on recent SIOP protocols from 1993 to 2005: a report of the SIOP renal tumour study group. Pediatr. Blood Cancer 56, 733–737 (2011).

    Article  PubMed  Google Scholar 

  87. Tomlinson, G. E. et al. Rhabdoid tumor of the kidney in the National Wilms’ Tumor Study: age at diagnosis as a prognostic factor. J. Clin. Oncol. 23, 7641–7645 (2005).

    Article  PubMed  Google Scholar 

  88. Abstracts From the 49th Congress of the International Society of Paediatric Oncology (SIOP) Washington, DC, USA October 12–15, 2017. Pediatr. Blood Cancer 64, e26772 (2017).

  89. Kieran, M. W. et al. Absence of oncogenic canonical pathway mutations in aggressive pediatric rhabdoid tumors. Pediatr. Blood Cancer 59, 1155–1157 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Holsten, T. et al. Germline variants in SMARCB1 and other members of the BAF chromatin-remodeling complex across human disease entities: a meta-analysis. Eur. J. Hum. Genet. 26, 1083–1093 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eaton, K. W., Tooke, L. S., Wainwright, L. M., Judkins, A. R. & Biegel, J. A. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr. Blood Cancer 56, 7–15 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kordes, U. et al. Clinical and molecular features in patients with atypical teratoid rhabdoid tumor or malignant rhabdoid tumor. Genes. Chromosomes Cancer 49, 176–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Brennan, B. et al. Outcome of extracranial malignant rhabdoid tumours in children registered in the European Paediatric Soft Tissue Sarcoma Study Group Non-Rhabdomyosarcoma Soft Tissue Sarcoma 2005 Study-EpSSG NRSTS 2005. Eur. J. Cancer 60, 69–82 (2016).

    Article  PubMed  Google Scholar 

  94. Schneppenheim, R. et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am. J. Hum. Genet. 86, 279–284 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hasselblatt, M. et al. Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am. J. Surg. Pathol. 35, 933–935 (2011).

    Article  PubMed  Google Scholar 

  96. Ammerlaan, A. C. J. et al. Long-term survival and transmission of INI1-mutation via nonpenetrant males in a family with rhabdoid tumour predisposition syndrome. Br. J. Cancer 98, 474–479 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Brennan, B., Stiller, C. & Bourdeaut, F. Extracranial rhabdoid tumours: what we have learned so far and future directions. Lancet Oncol. 14, e329–e336 (2013).

    Article  PubMed  Google Scholar 

  98. Lee, R. S. et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest. 122, 2983–2988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Johann, P. D. et al. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29, 379–393 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Chun, H. J. et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29, 394–406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chun, H.-J. E. et al. Identification and analyses of extra-cranial and cranial rhabdoid tumor molecular subgroups reveal tumors with cytotoxic T cell infiltration. Cell Rep. 29, 2338–2354.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Leruste, A. et al. Clonally expanded T cells reveal immunogenicity of rhabdoid tumors. Cancer Cell 36, 597–612.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Roberts, C. W. M., Galusha, S. A., McMenamin, M. E., Fletcher, C. D. M. & Orkin, S. H. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl Acad. Sci. USA 97, 13796–13800 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1, 500–506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guidi, C. J. et al. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol. Cell. Biol. 21, 3598–3603 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, Z.-K. et al. Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol. Cell. Biol. 22, 5975–5988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Versteege, I., Medjkane, S., Rouillard, D. & Delattre, O. A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle. Oncogene 21, 6403–6412 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. McKenna, E. S. et al. Epigenetic inactivation of the tumor suppressor BIN1 drives proliferation of SNF5-deficient tumors. Cell Cycle 11, 1956–1965 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Betz, B. L., Strobeck, M. W., Reisman, D. N., Knudsen, E. S. & Weissman, B. E. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene 21, 5193–5203 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Kia, S. K., Gorski, M. M., Giannakopoulos, S. & Verrijzer, C. P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol. Cell. Biol. 28, 3457–3464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gadd, S., Sredni, S. T., Huang, C.-C. & Perlman, E. J. Renal Tumor Committee of the Children’s Oncology Group. Rhabdoid tumor: gene expression clues to pathogenesis and potential therapeutic targets. Lab. Investig. J. Tech. Methods Pathol. 90, 724–738 (2010).

    Article  CAS  Google Scholar 

  112. Albanese, P., Belin, M.-F. & Delattre, O. The tumour suppressor hSNF5/INI1 controls the differentiation potential of malignant rhabdoid cells. Eur. J. Cancer 42, 2326–2334 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Jagani, Z. et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat. Med. 16, 1429–1433 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Mora-Blanco, E. L. et al. Activation of β-catenin/TCF targets following loss of the tumor suppressor SNF5. Oncogene 33, 933–938 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, X. et al. TCR-dependent transformation of mature memory phenotype T cells in mice. J. Clin. Invest. 121, 3834–3845 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, N. Q. et al. SMARCB1 loss activates patient-specific distal oncogenic enhancers in malignant rhabdoid tumors. Nat. Commun. 14, 7762 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Isakoff, M. S. et al. Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc. Natl Acad. Sci. USA 102, 17745–17750 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tsikitis, M., Zhang, Z., Edelman, W., Zagzag, D. & Kalpana, G. V. Genetic ablation of Cyclin D1 abrogates genesis of rhabdoid tumors resulting from Ini1 loss. Proc. Natl Acad. Sci. Usa. 102, 12129–12134 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kurmasheva, R. T., Erickson, S. W., Earley, E., Smith, M. A. & Houghton, P. J. In vivo evaluation of the EZH2 inhibitor (EPZ011989) alone or in combination with standard of care cytotoxic agents against pediatric malignant rhabdoid tumor preclinical models — a report from the Pediatric Preclinical Testing Consortium. Pediatr. Blood Cancer 68, e28772 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Tajbakhsh, M. et al. Initial testing of cisplatin by the pediatric preclinical testing program. Pediatr. Blood Cancer 50, 992–1000 (2008).

    Article  PubMed  Google Scholar 

  121. Maris, J. M. et al. Initial testing of the aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatr. Blood Cancer 55, 26–34 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Carol, H. et al. Initial testing of the MDM2 inhibitor RG7112 by the Pediatric Preclinical Testing Program. Pediatr. Blood Cancer 60, 633–641 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Kolb, E. A. et al. Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr. Blood Cancer 50, 1190–1197 (2008).

    Article  PubMed  Google Scholar 

  124. Lowery, C. D. et al. Broad spectrum activity of the checkpoint kinase 1 inhibitor prexasertib as a single agent or chemopotentiator across a range of preclinical pediatric tumor models. Clin. Cancer Res. 25, 2278–2289 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Howard, T. P. et al. MDM2 and MDM4 are therapeutic vulnerabilities in malignant rhabdoid tumors. Cancer Res. 79, 2404–2414 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Howard, T. P. et al. Rhabdoid tumors are sensitive to the protein-translation inhibitor homoharringtonine. Clin. Cancer Res. 26, 4995–5006 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim, K. H. & Roberts, C. W. M. Mechanisms by which SMARCB1 loss drives rhabdoid tumor growth. Cancer Genet. 207, 365–372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Henssen, A. G. et al. Therapeutic targeting of PGBD5-induced DNA repair dependency in pediatric solid tumors. Sci. Transl. Med. 9, eaam9078 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Chauvin, C. et al. High-throughput drug screening identifies pazopanib and clofilium tosylate as promising treatments for malignant rhabdoid tumors. Cell Rep. 21, 1737–1745 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Calandrini, C. et al. Organoid-based drug screening reveals neddylation as therapeutic target for malignant rhabdoid tumors. Cell Rep. 36, 109568 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Morin, A. et al. Proteasome inhibition as a therapeutic approach in atypical teratoid/rhabdoid tumors. Neurooncol. Adv. 2, vdaa051 (2020).

  132. Wang, X. et al. BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat. Commun. 10, 1881 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Radko-Juettner, S. et al. Targeting DCAF5 suppresses SMARCB1-mutant cancer by stabilizing SWI/SNF. Nature 628, 442–449 (2024).

    Article  CAS  PubMed  Google Scholar 

  134. Knutson, S. K. et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc. Natl Acad. Sci. Usa. 110, 7922–7927 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Chang, C.-J. & Hung, M.-C. The role of EZH2 in tumour progression. Br. J. Cancer 106, 243–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Drosos, Y. et al. NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Mol. Cell 82, 2472–2489.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kazansky, Y. et al. Overcoming clinical resistance to EZH2 inhibition using rational epigenetic combination therapy. Cancer Discov. 14, 965–981 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Argani, P. et al. Clear cell sarcoma of the kidney: a review of 351 cases from the National Wilms Tumor Study Group Pathology Center. Am. J. Surg. Pathol. 24, 4–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Suzuki, H. et al. Clear-cell sarcoma of the kidney seen in a 3-day-old newborn. Z. Kinderchir. 38, 422–424 (1983).

    CAS  PubMed  Google Scholar 

  142. Cao, M., Zhang, J., Ma, H. & Liang, Y. Clear cell sarcoma of the kidney in an adult: a case report and literature review. Transl. Cancer Res. 11, 288–294 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kidd, J. M. Exclusion of certain renal neoplasms from the category of Wilms’ tumor (abstract). Am. J. Pathol. 59, 16a (1970).

    Google Scholar 

  144. Morgan, E. & Kidd, J. M. Undifferentiated sarcoma of the kidney: a tumor of childhood with histopathologic and clinical characteristics distinct from Wilms’ tumor. Cancer 42, 1916–1921 (1978).

    Article  CAS  PubMed  Google Scholar 

  145. Benedetti, D. J. et al. Treatment and outcomes of clear cell sarcoma of the kidney: a report from the Children’s Oncology Group studies AREN0321 and AREN03B2. Cancer 130, 2361–2371 (2024).

    Article  CAS  PubMed  Google Scholar 

  146. Marsden, H. B. & Lawler, W. Bone-metastasizing renal tumour of childhood. Br. J. Cancer 38, 437–441 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Manchanda, V., Mohta, A., Khurana, N., Gupta, C. R. & Neogi, S. Bilateral clear cell sarcoma of the kidney. J. Pediatr. Surg. 45, 1927–1930 (2010).

    Article  PubMed  Google Scholar 

  148. Zekri, W. et al. Bilateral clear cell sarcoma of the kidney. J. Egypt. Natl Cancer Inst. 27, 97–100 (2015).

    Article  Google Scholar 

  149. Punnett, H. H., Halligan, G. E., Zaeri, N. & Karmazin, N. Translocation 10;17 in clear cell sarcoma of the kidney. A first report. Cancer Genet. Cytogenet. 41, 123–128 (1989).

    Article  CAS  PubMed  Google Scholar 

  150. Rakheja, D., Weinberg, A. G., Tomlinson, G. E., Partridge, K. & Schneider, N. R. Translocation (10;17)(q22;p13): a recurring translocation in clear cell sarcoma of kidney. Cancer Genet. Cytogenet. 154, 175–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Brownlee, N. A. et al. Recurring translocation (10;17) and deletion (14q) in clear cell sarcoma of the kidney. Arch. Pathol. Lab. Med. 131, 446–451 (2007).

    Article  PubMed  Google Scholar 

  152. O’Meara, E. et al. Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. J. Pathol. 227, 72–80 (2012).

    Article  PubMed  Google Scholar 

  153. Karlsson, J. et al. Activation of human telomerase reverse transcriptase through gene fusion in clear cell sarcoma of the kidney. Cancer Lett. 357, 498–501 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Lee, C.-H. et al. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc. Natl Acad. Sci. USA 109, 929–934 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kenny, C. et al. Dysregulated mitogen-activated protein kinase signalling as an oncogenic basis for clear cell sarcoma of the kidney. J. Pathol. 244, 334–345 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Ueno-Yokohata, H. et al. Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat. Genet. 47, 861–863 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Roy, A. et al. Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney. Nat. Commun. 6, 8891 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Astolfi, A. et al. Whole transcriptome sequencing identifies BCOR internal tandem duplication as a common feature of clear cell sarcoma of the kidney. Oncotarget 6, 40934–40939 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kenny, C. et al. Mutually exclusive BCOR internal tandem duplications and YWHAE-NUTM2 fusions in clear cell sarcoma of kidney: not the full story. J. Pathol. 238, 617–620 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Argani, P. et al. Primary renal sarcomas with BCOR-CCNB3 gene fusion: a report of 2 cases showing histologic overlap with clear cell sarcoma of kidney, suggesting further link between BCOR-related sarcomas of the kidney and soft tissues. Am. J. Surg. Pathol. 41, 1702–1712 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Han, H. et al. BCOR-CCNB3 fusion-positive clear cell sarcoma of the kidney. Pediatr. Blood Cancer 67, e28151 (2020).

    Article  PubMed  Google Scholar 

  162. Dorwal, P. et al. Clear cell sarcoma of the kidney (CCSK) with BCOR-CCNB3 fusion: a rare case report with a brief review of the literature. Pediatr. Dev. Pathol. 26, 149–152 (2023).

    Article  PubMed  Google Scholar 

  163. Wong, M. K. et al. Clear cell sarcomas of the kidney are characterised by BCOR gene abnormalities, including exon 15 internal tandem duplications and BCOR-CCNB3 gene fusion. Histopathology 72, 320–329 (2018).

    Article  PubMed  Google Scholar 

  164. Santiago, T. et al. Clear cell sarcoma of kidney involving a horseshoe kidney and harboring EGFR internal tandem duplication. Pediatr. Blood Cancer 64, e26602 (2017).

  165. Kao, Y.-C. et al. Recurrent BCOR internal tandem duplication and YWHAE-NUTM2B fusions in soft tissue undifferentiated round cell sarcoma of infancy: overlapping genetic features with clear cell sarcoma of kidney. Am. J. Surg. Pathol. 40, 1009–1020 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Antonescu, C. R. et al. Undifferentiated round cell sarcoma with BCOR internal tandem duplications (ITD) or YWHAE fusions: a clinicopathologic and molecular study. Mod. Pathol. 33, 1669–1677 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fehr, A., Hansson, M. C., Kindblom, L.-G. & Stenman, G. YWHAE-FAM22 gene fusion in clear cell sarcoma of the kidney. J. Pathol. 227, e5–e7 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Weeks, D. A., Malott, R. L., Zuppan, C., Mierau, G. W. & Beckwith, J. B. Primitive pelvic sarcoma resembling clear cell sarcoma of kidney. Ultrastruct. Pathol. 15, 403–408 (1991).

    Article  CAS  PubMed  Google Scholar 

  169. Karlsson, J. et al. Aberrant epigenetic regulation in clear cell sarcoma of the kidney featuring distinct DNA hypermethylation and EZH2 overexpression. Oncotarget 7, 11127–11136 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Ueno, H. et al. DNA methylation profile distinguishes clear cell sarcoma of the kidney from other pediatric renal tumors. PLoS ONE 8, e62233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gooskens, S. L. et al. TCF21 hypermethylation in genetically quiescent clear cell sarcoma of the kidney. Oncotarget 6, 15828–15841 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Huang, C.-C. et al. Classification of malignant pediatric renal tumors by gene expression. Pediatr. Blood Cancer 46, 728–738 (2006).

    Article  PubMed  Google Scholar 

  173. Cutcliffe, C. et al. Clear cell sarcoma of the kidney: up-regulation of neural markers with activation of the sonic hedgehog and Akt pathways. Clin. Cancer Res. 11, 7986–7994 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Karlsson, J. et al. Clear cell sarcoma of the kidney demonstrates an embryonic signature indicative of a primitive nephrogenic origin. Genes. Chromosomes Cancer 53, 381–391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kao, Y.-C. et al. NTRK3 overexpression in undifferentiated sarcomas with YWHAE and BCOR genetic alterations. Mod. Pathol. 33, 1341–1349 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Fiore, M. et al. Molecular signature of biological aggressiveness in clear cell sarcoma of the kidney (CCSK). Int. J. Mol. Sci. 24, 3743 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Balarezo, F. S. & Joshi, V. V. Clear cell sarcoma of the pediatric kidney: detailed description and analysis of variant histologic patterns of a tumor with many faces. Adv. Anat. Pathol. 8, 98–108 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Kao, Y.-C. et al. BCOR overexpression is a highly sensitive marker in round cell sarcomas with BCOR genetic abnormalities. Am. J. Surg. Pathol. 40, 1670–1678 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Argani, P. et al. Diffuse strong BCOR immunoreactivity is a sensitive and specific marker for clear cell sarcoma of the kidney (CCSK) in pediatric renal neoplasia. Am. J. Surg. Pathol. 42, 1128–1131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Kenny, C. et al. Immunophenotype-genotype correlations in clear cell sarcoma of kidney-an evaluation of diagnostic ancillary studies. Pediatr. Dev. Pathol. 23, 345–351 (2020).

    Article  PubMed  Google Scholar 

  181. Furtwängler, R. et al. Clear cell sarcomas of the kidney registered on International Society of Pediatric Oncology (SIOP) 93-01 and SIOP 2001 protocols: a report of the SIOP Renal Tumour Study Group. Eur. J. Cancer 49, 3497–3506 (2013).

    Article  PubMed  Google Scholar 

  182. England, R. J. et al. Mesoblastic nephroma: a report of the United Kingdom Children’s Cancer and Leukaemia Group (CCLG). Pediatr. Blood Cancer 56, 744–748 (2011).

    Article  PubMed  Google Scholar 

  183. Gooskens, S. L. et al. Congenital mesoblastic nephroma 50 years after its recognition: a narrative review. Pediatr. Blood Cancer 64, e26437 (2017).

  184. Ganick, D. J., Gilbert, E. F., Beckwith, J. B. & Kiviat, N. Congenital cystic mesoblastic nephroma. Hum. Pathol. 12, 1039–1043 (1981).

    Article  CAS  PubMed  Google Scholar 

  185. O’Malley, D. P., Mierau, G. W., Beckwith, J. B. & Weeks, D. A. Ultrastructure of cellular congenital mesoblastic nephroma. Ultrastruct. Pathol. 20, 417–427 (1996).

    Article  PubMed  Google Scholar 

  186. Nadasdy, T. et al. Congenital mesoblastic nephroma: an immunohistochemical and lectin study. Hum. Pathol. 24, 413–419 (1993).

    Article  CAS  PubMed  Google Scholar 

  187. Shao, L., Hill, D. A. & Perlman, E. J. Expression of WT-1, Bcl-2, and CD34 by primary renal spindle cell tumors in children. Pediatr. Dev. Pathol. 7, 577–582 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Arva, N. C., Bonadio, J., Perlman, E. J. & Cajaiba, M. M. Diagnostic utility of Pax8, Pax2, and NGFR immunohistochemical expression in pediatric renal tumors. Appl. Immunohistochem. Mol. Morphol. 26, 721–726 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Bolande, R. P., Brough, A. J. & Izant, R. J. Congenital mesoblastic nephroma of infancy. A report of eight cases and the relationship to Wilms’ tumor. Pediatrics 40, 272–278 (1967).

    Article  CAS  PubMed  Google Scholar 

  190. Beckwith, J. B. Mesenchymal renal neoplasms of infancy revisited. J. Pediatr. Surg. 9, 803–805 (1974).

    Article  CAS  PubMed  Google Scholar 

  191. Joshi, V. V., Kasznica, J. & Walters, T. R. Atypical mesoblastic nephroma. Pathologic characterization of a potentially aggressive variant of conventional congenital mesoblastic nephroma. Arch. Pathol. Lab. Med. 110, 100–106 (1986).

    CAS  PubMed  Google Scholar 

  192. Argani, P. & Beckwith, J. B. Metanephric stromal tumor: report of 31 cases of a distinctive pediatric renal neoplasm. Am. J. Surg. Pathol. 24, 917–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  193. Argani, P. et al. Frequent BRAF V600E mutations in metanephric stromal tumor. Am. J. Surg. Pathol. 40, 719–722 (2016).

    Article  PubMed  Google Scholar 

  194. Rudzinski, E. R. et al. Pan-Trk immunohistochemistry identifies NTRK rearrangements in pediatric mesenchymal tumors. Am. J. Surg. Pathol. 42, 927–935 (2018).

    Article  PubMed  Google Scholar 

  195. Misove, A. et al. An unusual fusion gene EML4-ALK in a patient with congenital mesoblastic nephroma. Genes. Chromosomes Cancer 60, 837–840 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Wegert, J. et al. Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants. Nat. Commun. 9, 2378 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Church, A. J. et al. Recurrent EML4–NTRK3 fusions in infantile fibrosarcoma and congenital mesoblastic nephroma suggest a revised testing strategy. Mod. Pathol. 31, 463–473 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Hornick, J. L. Replacing molecular genetic testing with immunohistochemistry using antibodies that recognize the protein products of gene rearrangements: ‘next-generation’ immunohistochemistry. Am. J. Surg. Pathol. 45, 584–586 (2021).

    Article  PubMed  Google Scholar 

  199. Vokuhl, C. et al. ETV6–NTRK3 in congenital mesoblastic nephroma: a report of the SIOP/GPOH nephroblastoma study. Pediatr. Blood Cancer 65, e26925 (2018).

  200. El Demellawy, D. et al. Congenital mesoblastic nephroma: a study of 19 cases using immunohistochemistry and ETV6-NTRK3 fusion gene rearrangement. Pathology 48, 47–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Anderson, J., Gibson, S. & Sebire, N. J. Expression of ETV6-NTRK in classical, cellular and mixed subtypes of congenital mesoblastic nephroma. Histopathology 48, 748–753 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Rubin, B. P. et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am. J. Pathol. 153, 1451–1458 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Knezevich, S. R. et al. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 58, 5046–5048 (1998).

    CAS  PubMed  Google Scholar 

  204. van Spronsen, R. et al. Infantile fibrosarcoma with an EGFR kinase ___domain duplication: underlining a close relationship with congenital mesoblastic nephroma and highlighting a similar morphological spectrum. Ann. Diagn. Pathol. 57, 151885 (2022).

    Article  PubMed  Google Scholar 

  205. Vanoli, F. et al. Generating in vitro models of NTRK-fusion mesenchymal neoplasia as tools for investigating kinase oncogenic activation and response to targeted therapy. Oncogenesis 12, 8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tongsong, T., Palangmonthip, W., Chankhunaphas, W. & Luewan, S. Prenatal course and sonographic features of congenital mesoblastic nephroma. Diagnostics 12, 1951 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Siemer, S. et al. Prenatal diagnosis of congenital mesoblastic nephroma associated with renal hypertension in a premature child. Int. J. Urol. 11, 50–52 (2004).

    Article  PubMed  Google Scholar 

  208. Montaruli, E. & Fouquet, V. Prenatal diagnosis of congenital mesoblastic nephroma. Fetal Diagn. Ther. 33, 79–80 (2013).

    Article  PubMed  Google Scholar 

  209. Chen, W.-Y. et al. Prenatal diagnosis of congenital mesoblastic nephroma in mid-second trimester by sonography and magnetic resonance imaging. Prenat. Diagn. 23, 927–931 (2003).

    Article  PubMed  Google Scholar 

  210. Woolfield, N. F., Abbott, G. D. & McRae, C. U. A mesoblastic nephroma with hypercalcaemia. Aust. Paediatr. J. 24, 309–310 (1988).

    CAS  PubMed  Google Scholar 

  211. Fung, T. Y., Fung, Y. M., Ng, P. C., Yeung, C. K. & Chang, M. Z. Polyhydramnios and hypercalcemia associated with congenital mesoblastic nephroma: case report and a new appraisal. Obstet. Gynecol. 85, 815–817 (1995).

    Article  CAS  PubMed  Google Scholar 

  212. Jayabose, S. et al. Hypercalcemia in childhood renal tumors. Cancer 61, 788–791 (1988).

    Article  CAS  PubMed  Google Scholar 

  213. Malone, P. S. et al. Congenital mesoblastic nephroma, renin production, and hypertension. J. Pediatr. Surg. 24, 599–600 (1989).

    Article  CAS  PubMed  Google Scholar 

  214. Cook, H. T., Taylor, G. M., Malone, P. & Risdon, R. A. Renin in mesoblastic nephroma: an immunohistochemical study. Hum. Pathol. 19, 1347–1351 (1988).

    Article  CAS  PubMed  Google Scholar 

  215. Loeb, D. M., Hill, D. A. & Dome, J. S. Complete response of recurrent cellular congenital mesoblastic nephroma to chemotherapy. J. Pediatr. Hematol. Oncol. 24, 478–481 (2002).

    Article  PubMed  Google Scholar 

  216. Jehangir, S., Kurian, J. J., Selvarajah, D., Thomas, R. J. & Holland, A. J. A. Recurrent and metastatic congenital mesoblastic nephroma: where does the evidence stand? Pediatr. Surg. Int. 33, 1183–1188 (2017).

    Article  PubMed  Google Scholar 

  217. Orbach, D. et al. Spotlight on the treatment of infantile fibrosarcoma in the era of neurotrophic tropomyosin receptor kinase inhibitors: international consensus and remaining controversies. Eur. J. Cancer 137, 183–192 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Nagasubramanian, R. et al. Infantile fibrosarcoma with NTRK3–ETV6 fusion successfully treated with the tropomyosin-related kinase inhibitor LOXO-101. Pediatr. Blood Cancer 63, 1468–1470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Laetsch, T. W. et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 19, 705–714 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. DuBois, S. G. et al. The use of neoadjuvant larotrectinib in the management of children with locally advanced TRK fusion sarcomas. Cancer 124, 4241–4247 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Treece, A. L. Pediatric renal tumors: updates in the molecular era. Surg. Pathol. Clin. 13, 695–718 (2020).

    Article  PubMed  Google Scholar 

  222. Li, Y., Pawel, B. R., Hill, D. A., Epstein, J. I. & Argani, P. Pediatric cystic nephroma is morphologically, immunohistochemically, and genetically distinct from adult cystic nephroma. Am. J. Surg. Pathol. 41, 472–481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Schultz, K. A. P. et al. DICER1 and associated conditions: identification of at-risk individuals and recommended surveillance strategies. Clin. Cancer Res. 24, 2251–2261 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Guillerman, R. P., Foulkes, W. D. & Priest, J. R. Imaging of DICER1 syndrome. Pediatr. Radiol. 49, 1488–1505 (2019).

    Article  PubMed  Google Scholar 

  225. van Peer, S. E. et al. Clinical and molecular characteristics and outcome of cystic partially differentiated nephroblastoma and cystic nephroma: a narrative review of the literature. Cancers 13, 997 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Wu, M. K. et al. Tumor progression in DICER1-mutated cystic nephroma-witnessing the genesis of anaplastic sarcoma of the kidney. Hum. Pathol. 53, 114–120 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Kao, J.-L., Tsung, S.-H. & Shiao, C.-C. Rare anaplastic sarcoma of the kidney: a case report. World J. Clin. Cases 8, 1495–1501 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Chen, C.-C. & Liao, K.-S. Anaplastic sarcoma of the kidney: case report and literature review. Tzu Chi Med. J. 31, 129–132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Arabi, H., Al-Maghraby, H., Yamani, A., Yousef, Y. & Huwait, H. Anaplastic sarcoma of the kidney: a rare unique renal neoplasm. Int. J. Surg. Pathol. 24, 556–561 (2016).

    Article  PubMed  Google Scholar 

  230. Vujanić, G. M., Kelsey, A., Perlman, E. J., Sandstedt, B. & Beckwith, J. B. Anaplastic sarcoma of the kidney: a clinicopathologic study of 20 cases of a new entity with polyphenotypic features. Am. J. Surg. Pathol. 31, 1459–1468 (2007).

    Article  PubMed  Google Scholar 

  231. Argani, P. et al. Primary renal synovial sarcoma: molecular and morphologic delineation of an entity previously included among embryonal sarcomas of the kidney. Am. J. Surg. Pathol. 24, 1087–1096 (2000).

    Article  CAS  PubMed  Google Scholar 

  232. Thorner, P. S. et al. PRAME protein expression in DICER1-related tumours. J. Pathol. Clin. Res. 8, 294–304 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Wu, M. K. et al. Evolution of renal cysts to anaplastic sarcoma of kidney in a child with DICER1 syndrome. Pediatr. Blood Cancer 63, 1272–1275 (2016).

    Article  CAS  PubMed  Google Scholar 

  234. Wu, M. K. et al. Anaplastic sarcomas of the kidney are characterized by DICER1 mutations. Mod. Pathol. 31, 169–178 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Doros, L. A. et al. DICER1 mutations in childhood cystic nephroma and its relationship to DICER1-renal sarcoma. Mod. Pathol. 27, 1267–1280 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kroll-Wheeler, L. & Heider, A. Anaplastic sarcoma of the kidney with heterologous ganglioneuroblastic differentiation: another DICER1-associated tumor. Pediatr. Dev. Pathol. 25, 186–191 (2022).

    Article  PubMed  Google Scholar 

  237. Galliani, C. A., Bisceglia, M., Del Giudice, A. & Cretì, G. Desmoplastic small round cell tumor of the kidney: report of a case, literature review, and comprehensive discussion of the distinctive morphologic, immunohistochemical, and molecular features in the differential diagnosis of small round cell tumors affecting the kidney. Adv. Anat. Pathol. 27, 408–421 (2020).

    Article  PubMed  Google Scholar 

  238. Ertoy Baydar, D., Armutlu, A., Aydin, O., Dagdemir, A. & Yakupoglu, Y. K. Desmoplastic small round cell tumor of the kidney: a case report. Diagn. Pathol. 15, 95 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Eklund, M. J., Cundiff, C., Shehata, B. M. & Alazraki, A. L. Desmoplastic small round cell tumor of the kidney with unusual imaging features. Clin. Imaging 39, 904–907 (2015).

    Article  PubMed  Google Scholar 

  240. Rao, P., Tamboli, P., Fillman, E. P. & Meis, J. M. Primary intra-renal desmoplastic small round cell tumor: expanding the histologic spectrum, with special emphasis on the differential diagnostic considerations. Pathol. Res. Pract. 210, 1130–1133 (2014).

    Article  PubMed  Google Scholar 

  241. da Silva, R. C. et al. Desmoplastic small round cell tumor of the kidney mimicking Wilms tumor: a case report and review of the literature. Appl. Immunohistochem. Mol. Morphol. 17, 557–562 (2009).

    Article  PubMed  Google Scholar 

  242. Eaton, S. H. & Cendron, M. A. Primary desmoplastic small round cell tumor of the kidney in a 7-year-old girl. J. Pediatr. Urol. 2, 52–54 (2006).

    Article  PubMed  Google Scholar 

  243. Collardeau-Frachon, S. et al. Primary desmoplastic small round cell tumor of the kidney: a case report in a 14-year-old girl with molecular confirmation. Pediatr. Dev. Pathol. 10, 320–324 (2007).

    Article  PubMed  Google Scholar 

  244. Wang, L. L. et al. Desmoplastic small round cell tumor of the kidney in childhood. Am. J. Surg. Pathol. 31, 576–584 (2007).

    Article  PubMed  Google Scholar 

  245. Barnoud, R. et al. Immunohistochemical expression of WT1 by desmoplastic small round cell tumor: a comparative study with other small round cell tumors. Am. J. Surg. Pathol. 24, 830–836 (2000).

    Article  CAS  PubMed  Google Scholar 

  246. Gerald, W. L. et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small round-cell tumor and its variants. J. Clin. Oncol. 16, 3028–3036 (1998).

    Article  CAS  PubMed  Google Scholar 

  247. Magrath, J. W. et al. Comprehensive transcriptomic analysis of EWSR1::WT1 targets identifies CDK4/6 inhibitors as an effective therapy for desmoplastic small round cell tumors. Cancer Res. 84, 1426–1442 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Slotkin, E. K. et al. Comprehensive molecular profiling of desmoplastic small round cell tumor. Mol. Cancer Res. 19, 1146–1155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Chow, W. A. et al. Recurrent secondary genomic alterations in desmoplastic small round cell tumors. BMC Med. Genet. 21, 101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Honoré, C. et al. Can we cure patients with abdominal desmoplastic small round cell tumor? Results of a retrospective multicentric study on 100 patients. Surg. Oncol. 29, 107–112 (2019).

    Article  PubMed  Google Scholar 

  251. Quezado, M., Benjamin, D. R. & Tsokos, M. EWS/FLI-1 fusion transcripts in three peripheral primitive neuroectodermal tumors of the kidney. Hum. Pathol. 28, 767–771 (1997).

    Article  CAS  PubMed  Google Scholar 

  252. Rodriguez-Galindo, C. et al. Is primitive neuroectodermal tumor of the kidney a distinct entity? Cancer 79, 2243–2250 (1997).

    Article  CAS  PubMed  Google Scholar 

  253. Liang, L. et al. Renal Ewing’s sarcoma/primitive neuroectodermal tumor (PNET): a case series of 7 patients and literature review. Transl. Androl. Urol. 10, 548–554 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Qureshi, S. S. et al. Incidence, treatment, and outcomes of primary and recurrent Non-Wilms renal tumors in children: report of 109 patients treated at a single institution. J. Pediatr. Urol. 16, 475.e1–475.e9 (2020).

    Article  PubMed  Google Scholar 

  255. Murugan, P., Rao, P., Tamboli, P., Czerniak, B. & Guo, C. C. Primary Ewing sarcoma/primitive neuroectodermal tumor of the kidney: a clinicopathologic study of 23 cases. Pathol. Oncol. Res. 24, 153–159 (2018).

    Article  CAS  PubMed  Google Scholar 

  256. Zöllner, S., Dirksen, U., Jürgens, H. & Ranft, A. Renal Ewing tumors. Ann. Oncol. 24, 2455–2461 (2013).

    Article  PubMed  Google Scholar 

  257. Rowe, R. G. et al. Ewing sarcoma of the kidney: case series and literature review of an often overlooked entity in the diagnosis of primary renal tumors. Urology 81, 347–353 (2013).

    Article  PubMed  Google Scholar 

  258. Karpate, A. et al. Ewing sarcoma/primitive neuroectodermal tumor of the kidney: clinicopathologic analysis of 34 cases. Ann. Diagn. Pathol. 16, 267–274 (2012).

    Article  PubMed  Google Scholar 

  259. Popov, S. D., Sebire, N. J., Pritchard-Jones, K. & Vujanić, G. M. Renal tumors in children aged 10–16 years: a report from the United Kingdom Children’s Cancer and Leukaemia Group. Pediatr. Dev. Pathol. 14, 189–193 (2011).

    Article  PubMed  Google Scholar 

  260. Thyavihally, Y. B. et al. Primitive neuroectodermal tumor of the kidney: a single institute series of 16 patients. Urology 71, 292–296 (2008).

    Article  PubMed  Google Scholar 

  261. Ellison, D. A., Parham, D. M., Bridge, J. & Beckwith, J. B. Immunohistochemistry of primary malignant neuroepithelial tumors of the kidney: a potential source of confusion? A study of 30 cases from the National Wilms Tumor Study Pathology Center. Hum. Pathol. 38, 205–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  262. Jimenez, R. E. et al. Primary Ewing’s sarcoma/primitive neuroectodermal tumor of the kidney: a clinicopathologic and immunohistochemical analysis of 11 cases. Am. J. Surg. Pathol. 26, 320–327 (2002).

    Article  PubMed  Google Scholar 

  263. Parham, D. M. et al. Primary malignant neuroepithelial tumors of the kidney: a clinicopathologic analysis of 146 adult and pediatric cases from the National Wilms’ Tumor Study Group Pathology Center. Am. J. Surg. Pathol. 25, 133–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  264. Tarek, N. et al. Primary Ewing sarcoma/primitive neuroectodermal tumor of the kidney: the MD Anderson Cancer Center Experience. Cancers 12, 2927 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Lalwani, N. et al. Pediatric and adult primary sarcomas of the kidney: a cross-sectional imaging review. Acta Radiol. 52, 448–457 (2011).

    Article  PubMed  Google Scholar 

  266. Radhakrishnan, V. et al. Synovial sarcoma of kidney in a child: a rare presentation. J. Indian. Assoc. Pediatr. Surg. 21, 75–77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Mastoraki, A. et al. Primary synovial sarcoma of the kidney: diagnostic approach and therapeutic modalities for a rare nosological entity. J. Pers. Med. 12, 1450 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Feng, X. et al. The role of SYT-SSX fusion gene in tumorigenesis of synovial sarcoma. Pathol. Res. Pract. 222, 153416 (2021).

    Article  CAS  PubMed  Google Scholar 

  269. Kadoch, C. & Crabtree, G. R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 153, 71–85 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Li, J. et al. A role for SMARCB1 in synovial sarcomagenesis reveals that SS18–SSX induces canonical BAF destruction. Cancer Discov. 11, 2620–2637 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 7, e41305 (2018).

  272. Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Livingston, J. A. et al. A phase 1 study of FHD-609, a heterobifunctional degrader of bromodomain-containing protein 9, in patients with advanced synovial sarcoma or SMARCB1-deficient tumors. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-24-2583 (2024).

    Article  PubMed  Google Scholar 

  274. de Jel, D. V. C. et al. Paediatric metanephric tumours: a clinicopathological and molecular characterisation. Crit. Rev. Oncol. Hematol. 150, 102970 (2020).

    Article  PubMed  Google Scholar 

  275. Arroyo, M. R., Green, D. M., Perlman, E. J., Beckwith, J. B. & Argani, P. The spectrum of metanephric adenofibroma and related lesions: clinicopathologic study of 25 cases from the National Wilms Tumor Study Group Pathology Center. Am. J. Surg. Pathol. 25, 433–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  276. Chami, R. et al. BRAF mutations in pediatric metanephric tumors. Hum. Pathol. 46, 1153–1161 (2015).

    Article  CAS  PubMed  Google Scholar 

  277. Choueiri, T. K. et al. BRAF mutations in metanephric adenoma of the kidney. Eur. Urol. 62, 917–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Fejes, Z. et al. Angiomyolipoma of the kidney-clinicopathological analysis of 52 cases. Pathol. Oncol. Res. 28, 1610831 (2022).

    Article  PubMed  Google Scholar 

  279. Warncke, J. C. et al. Pediatric renal angiomyolipomas in tuberous sclerosis complex. J. Urol. 197, 500–506 (2017).

    Article  PubMed  Google Scholar 

  280. Bissler, J. J. & Kingswood, J. C. Renal angiomyolipomata. Kidney Int. 66, 924–934 (2004).

    Article  PubMed  Google Scholar 

  281. Dabora, S. L. et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am. J. Hum. Genet. 68, 64–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  282. Muto, Y. et al. Genotype-phenotype correlation of renal lesions in the tuberous sclerosis complex. Hum. Genome Var. 9, 1–5 (2022).

    Article  Google Scholar 

  283. Martin, K. R. et al. The genomic landscape of tuberous sclerosis complex. Nat. Commun. 8, 15816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Henske, E. P. et al. Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band 16p13 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Genes. Chromosomes Cancer 13, 295–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  285. Qin, W. et al. Angiomyolipoma have common mutations in TSC2 but no other common genetic events. PLoS ONE 6, e24919 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Agaram, N. P. et al. Dichotomy of genetic abnormalities in PEComas with therapeutic implications. Am. J. Surg. Pathol. 39, 813–825 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Malinowska, I. et al. Perivascular epithelioid cell tumors (PEComas) harboring TFE3 gene rearrangements lack the TSC2 alterations characteristic of conventional PEComas: further evidence for a biological distinction. Am. J. Surg. Pathol. 36, 783–784 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell 11, 1457–1466 (2003).

    Article  CAS  PubMed  Google Scholar 

  289. Dibble, C. C. & Cantley, L. C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 25, 545–555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Pleniceanu, O., Omer, D., Azaria, E., Harari-Steinberg, O. & Dekel, B. mTORC1 inhibition is an effective treatment for sporadic renal angiomyolipoma. Kidney Int. Rep. 3, 155–159 (2018).

    Article  PubMed  Google Scholar 

  291. Bissler, J. J. et al. Everolimus long-term use in patients with tuberous sclerosis complex: four-year update of the EXIST-2 study. PLoS ONE 12, e0180939 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Banerjee, A., Reddy K, A., Munghate, G., Bodhanwala, M. & Bendre, P. S. Ossifying renal tumor of infancy — a case report. J. Pediatr. Surg. Case Rep. 93, 102650 (2023).

    Article  Google Scholar 

  293. Schelling, J., Schröder, A., Stein, R. & Rösch, W. H. Ossifying renal tumor of infancy. J. Pediatr. Urol. 3, 258–261 (2007).

    Article  PubMed  Google Scholar 

  294. Lee, S. H., Choi, Y. H., Kim, W. S., Cheon, J.-E. & Moon, K. C. Ossifying renal tumor of infancy: findings at ultrasound, CT and MRI. Pediatr. Radiol. 44, 625–628 (2014).

    Article  PubMed  Google Scholar 

  295. Sotelo-Avila, C., Beckwith, J. B. & Johnson, J. E. Ossifying renal tumor of infancy: a clinicopathologic study of nine cases. Pediatr. Pathol. Lab. Med. 15, 745–762 (1995).

    Article  CAS  PubMed  Google Scholar 

  296. Liu, J. et al. Clonal trisomy 4 cells detected in the ossifying renal tumor of infancy: study of 3 cases. Mod. Pathol. 26, 275–281 (2013).

    Article  PubMed  Google Scholar 

  297. Hu, J., Wu, Y., Qi, J., Zhang, C. & Lv, F. Ossifying renal tumor of infancy (ORTI): a case report and review of the literature. J. Pediatr. Surg. 48, e37–e40 (2013).

    Article  PubMed  Google Scholar 

  298. Inam, R., Gandhi, J., Joshi, G., Smith, N. L. & Khan, S. A. Juxtaglomerular cell tumor: reviewing a cryptic cause of surgically correctable hypertension. Curr. Urol. 13, 7–12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Trnka, P., Orellana, L., Walsh, M., Pool, L. & Borzi, P. Reninoma: an uncommon cause of renin-mediated hypertension. Front. Pediatr. 2, 89 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Kuroda, N. et al. Juxtaglomerular cell tumor: a morphological, immunohistochemical and genetic study of six cases. Hum. Pathol. 44, 47–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  301. Treger, T. D. et al. Targetable NOTCH1 rearrangements in reninoma. Nat. Commun. 14, 5826 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. A.L.H., D.P., M.J.O.S., A.L.W., J.D., J.I.G. and M.M.V.D.H.E. contributed substantially to discussion of the content. All authors wrote the article. A.L.H., D.P., M.J.O.S., A.L.W., J.D., D.J.B., N.G.C., J.S.D., E.A.M., A.J.M., M.V.O., J.N.V.D.B., J.W., F.S., J.I.G. and M.M.V.D.H.E. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Andrew L. Hong.

Ethics declarations

Competing interests

N.G.C.’s spouse is a Senior Medical Officer for Jannsen. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Harold Lovvorn and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perotti, D., O’Sullivan, M.J., Walz, A.L. et al. Hallmark discoveries in the biology of non-Wilms tumour childhood kidney cancers. Nat Rev Urol (2025). https://doi.org/10.1038/s41585-024-00993-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00993-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer