Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The role of the urinary microbiome in genitourinary cancers

Abstract

Genitourinary cancers account for 20% of cancer instances globally and pose a substantial burden. The microbiome, defined as the ecosystem of organisms that reside within and on the human body, seems to be closely related to multiple cancers. Research on the gut microbiome has yielded substantial insights into the interactions of this entity with the immune system and cancer therapeutic efficacy, whereas the urinary microbiome has been relatively less well-studied. Advances in next-generation sequencing technologies led to new discoveries in the urinary microbiome, which might aid in early detection, risk stratification and personalized treatment strategies in genitourinary cancers. Mechanistic investigations have also suggested a role for the urinary microbiome in modulating the tumour microenvironment and host immune response. For example, distinct urinary microbial signatures have been linked to bladder cancer occurrence and recurrence risk, with specific taxa associated with cytokine production and inflammation. Urinary microbiome signatures have also been explored as potential biomarkers for non-invasive cancer detection. However, challenges remain in standardizing methodologies, validating findings across studies, and establishing causative mechanisms. As investigations into the urinary microbiome continue to evolve, so does the potential for developing microbiome-modulating therapies and enhancing diagnostic capabilities to improve outcomes in patients with genitourinary cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbial populations in urinary health and genitourinary cancers.
Fig. 2: Proposed mechanisms through which the urinary microbiome might influence bladder cancer.

Similar content being viewed by others

References

  1. Schafer, E. J. et al. Disparities and trends in genitourinary cancer incidence and mortality in the USA. Eur. Urol. 84, 117–126 (2023).

    Article  PubMed  Google Scholar 

  2. Yafi, F. A. et al. Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer. Urol. Oncol. 33, 66.e25–31 (2015).

    Article  PubMed  Google Scholar 

  3. Tan, W. C. & Kanesvaran, R. Current standards and practice changing studies in genitourinary (GU) cancers — a review of studies in localized/early GU cancers. ESMO Open. 7, 100432 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gilbert, J. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hou, K. et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 7, 1–28 (2022).

    Google Scholar 

  6. Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nelson, D. E. et al. Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS ONE 5, e14116 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dong, Q. et al. The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS ONE 6, e19709 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nelson, D. E. et al. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS ONE 7, e36298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wolfe, A. J. et al. Evidence of uncultivated bacteria in the adult female bladder. J. Clin. Microbiol. 50, 1376–1383 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fouts, D. E. et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J. Transl. Med. 10, 174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khasriya, R. et al. Spectrum of bacterial colonization associated with urothelial cells from patients with chronic lower urinary tract symptoms. J. Clin. Microbiol. 51, 2054–2062 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hilt, E. E. et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J. Clin. Microbiol. 52, 871–876 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wolfe, A. J. & Brubaker, L. “Sterile Urine” and the presence of bacteria. Eur. Urol. 68, 173–174 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Markowski, M. C. et al. The microbiome and genitourinary cancer: a collaborative review. Eur. Urol. 75, 637–646 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pohl, H. G. et al. The urine microbiome of healthy men and women differs by urine collection method. Int. Neurourol. J. 24, 41–51 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lagier, J.-C. et al. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16, 540–550 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Deen, N. S., Ahmed, A., Tasnim, N. T. & Khan, N. Clinical relevance of expanded quantitative urine culture in health and disease. Front. Cell Infect. Microbiol. 13, 1210161 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hu, T., Chitnis, N., Monos, D. & Dinh, A. Next-generation sequencing technologies: an overview. Hum. Immunol. 82, 801–811 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Halderman, A. A. & Lane, A. P. Organism and microbiome analysis: techniques and implications for chronic rhinosinusitis. Otolaryngol. Clin. North. Am. 50, 521–532 (2017).

    Article  PubMed  Google Scholar 

  22. Tringe, S. G. & Hugenholtz, P. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 11, 442–446 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Schloss, P. D. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. PLOS Comput. Biol. 6, e1000844 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Clarridge, J. E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17, 840–862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brubaker, L., Putonti, C., Dong, Q. & Wolfe, A. J. The human urobiome. Mamm. Genome 32, 232–238 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao, B. et al. An introduction to next generation sequencing bioinformatic analysis in gut microbiome studies. Biomolecules 11, 530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mostafa, M. H., Sheweita, S. A. & O’Connor, P. J. Relationship between schistosomiasis and bladder cancer. Clin. Microbiol. Rev. 12, 97–111 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adebayo, A. S. et al. The microbiome in urogenital schistosomiasis and induced bladder pathologies. PLoS Negl. Trop. Dis. 11, e0005826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chorbińska, J. et al. Is the urinary and gut microbiome associated with bladder cancer? Clin. Med. Insights Oncol. 17, 11795549231206796 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bučević Popović, V. et al. The urinary microbiome associated with bladder cancer. Sci. Rep. 8, 12157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hrbáček, J., Tláskal, V., Čermák, P., Hanáček, V. & Zachoval, R. Bladder cancer is associated with decreased urinary microbiota diversity and alterations in microbial community composition. Urol. Oncol. 41, 107.e15–107.e22 (2023).

    Article  PubMed  Google Scholar 

  33. Uzelac, M. et al. Urinary microbiome dysbiosis and immune dysregulations as potential diagnostic indicators of bladder cancer. Cancers 16, 394 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Parra-Grande, M. et al. Profiling the bladder microbiota in patients with bladder cancer. Front Microbiol 12, 718776 (2021).

    Article  PubMed  Google Scholar 

  35. Pederzoli, F. et al. Sex-specific alterations in the urinary and tissue microbiome in therapy-naïve urothelial bladder cancer patients. Eur. Urol. Oncol. 3, 784–788 (2020).

    Article  PubMed  Google Scholar 

  36. Qiu, Y. et al. Deciphering the influence of urinary microbiota on FoxP3+ regulatory T cell infiltration and prognosis in Chinese patients with non-muscle-invasive bladder cancer. Hum. Cell 35, 511–521 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Mai, G. et al. Common core bacterial biomarkers of bladder cancer based on multiple datasets. Biomed. Res. Int. 2019, 4824909 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gedefie, A. et al. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: a review. Infect. Drug Resist. 14, 3711–3719 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brossard, K. A. & Campagnari, A. A. The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect. Immun. 80, 228–233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Y., Wang, W., Zhou, H. & Cui, Y. Urinary Eubacterium sp. CAG:581 promotes non-muscle invasive bladder cancer (NMIBC) development through the ECM1/MMP9 pathway. Cancers 15, 809 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zeng, J. et al. Alterations in urobiome in patients with bladder cancer and implications for clinical outcome: a single-institution study. Front. Cell Infect. Microbiol. 10, 555508 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ślusarczyk, A. et al. Changes in the urinary microbiome after transurethral resection of non-muscle-invasive bladder cancer: insights from a prospective observational study. Ann. Surg. Oncol. 31, 4773–4786 (2024).

    Article  PubMed  Google Scholar 

  43. Bajic, P., Wolfe, A. J. & Gupta, G. N. Old instillations and new implications for bladder cancer: the urinary microbiome and intravesical BCG. BJU Int. 124, 7–8 (2019).

    Article  PubMed  Google Scholar 

  44. Ingersoll, M. A. & Albert, M. L. From infection to immunotherapy: host immune responses to bacteria at the bladder mucosa. Mucosal Immunol. 6, 1041–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Redelman-Sidi, G., Glickman, M. S. & Bochner, B. H. The mechanism of action of BCG therapy for bladder cancer — a current perspective. Nat. Rev. Urol. 11, 153–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. McMillan, A., Macklaim, J. M., Burton, J. P. & Reid, G. Adhesion of Lactobacillus iners AB-1 to human fibronectin: a key mediator for persistence in the vagina? Reprod. Sci. 20, 791–796 (2013).

    Article  PubMed  Google Scholar 

  47. Seow, S. W. et al. Lactobacillus species is more cytotoxic to human bladder cancer cells than Mycobacterium bovis (bacillus Calmette-Guerin). J. Urol. 168, 2236–2239 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. James, C. et al. Impact of intravesical Bacillus Calmette-Guérin and chemotherapy on the bladder microbiome in patients with non-muscle invasive bladder cancer. Front. Cell Infect. Microbiol. 13, 1125809 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heidrich, V. et al. The bladder microbiota is not significantly altered by intravesical BCG therapy. Urol Oncol 42, 22.e13–22.e21 (2024).

    Article  PubMed  Google Scholar 

  50. Pederzoli, F. et al. Is there a detrimental effect of antibiotic therapy in patients with muscle-invasive bladder cancer treated with neoadjuvant pembrolizumab? Eur. Urol. 80, 319–322 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Febriyanto, T., Muhammad, F., Wijaya, W., Oey, O. & Simadibrata, D. M. Antibiotic use reduces the efficacy of immune checkpoint inhibitors in patients with urothelial carcinoma: a systematic review and meta-analysis. Urol. Oncol. 42, 160.e11–160.e23 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Ishiyama, Y. et al. Antibiotic use and survival of patients receiving pembrolizumab for chemotherapy-resistant metastatic urothelial carcinoma. Urol. Oncol. 39, 834.e21–834.e28 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Wu, P. et al. Profiling the urinary microbiota in male patients with bladder cancer in China. Front. Cell Infect. Microbiol. 8, 167 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yu, E. Y.-W. et al. Integrative multi-omics analysis for the determination of non-muscle invasive vs. muscle invasive bladder cancer: a pilot study. Curr. Oncol. 29, 5442–5456 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Roje, B. et al. Gut microbiota carcinogen metabolism causes distal tissue tumours. Nature 632, 1137–1144 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pederzoli, F. et al. Stool microbiome signature associated with response to neoadjuvant pembrolizumab in patients with muscle-invasive bladder cancer. European Urology 85, 417–421 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Bandini, M. et al. Does the administration of preoperative pembrolizumab lead to sustained remission post-cystectomy? First survival outcomes from the PURE-01 study. Ann. Oncol. 31, 1755–1763 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Basile, G. et al. Neoadjuvant pembrolizumab and radical cystectomy in patients with muscle-invasive urothelial bladder cancer: 3-year median follow-up update of PURE-01 trial. Clin. Cancer Res. 28, 5107–5114 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Bukavina, L. et al. Role of gut microbiome in neoadjuvant chemotherapy response in urothelial carcinoma: a multi-institutional prospective cohort evaluation. Cancer Res. Commun. 4, 1505 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, C. et al. Urogenital microbiota: potentially important determinant of PD-L1 expression in male patients with non-muscle invasive bladder cancer. BMC Microbiol. 22, 7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wu, C. et al. Urinary microbiome dysbiosis is associated with an inflammatory environment and perturbed fatty acids metabolism in the pathogenesis of bladder cancer. J. Transl. Med. 22, 628 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ratajczak, W. et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim. Pol. 66, 1–12 (2019).

    CAS  PubMed  Google Scholar 

  63. Yu, H. et al. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch. Med. Sci. 11, 385–394 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gonçalves, M. F. M. et al. Microbiota of urine, glans and prostate biopsies in patients with prostate cancer reveals a dysbiosis in the genitourinary system. Cancers 15, 1423 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Williams, G. D. Two cases of urinary tract infection caused by Propionimicrobium lymphophilum. J. Clin. Microbiol. 53, 3077–3080 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shrestha, E. et al. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J. Urol. 199, 161–171 (2018).

    Article  PubMed  Google Scholar 

  67. Pan, S.-Y., Chen, W.-C., Huang, C.-P., Hsu, C. Y. & Chang, Y.-H. The association of prostate cancer and urinary tract infections: a new perspective of prostate cancer pathogenesis. Medicina 59, 483 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  68. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256–269 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chagneau, C. V. et al. Uropathogenic E. coli induces DNA damage in the bladder. PLoS Pathog 17, e1009310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wilson, M. R. et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363, eaar7785 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nougayrède, J.-P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–851 (2006).

    Article  PubMed  Google Scholar 

  72. Shrestha, E. et al. Oncogenic gene fusions in nonneoplastic precursors as evidence that bacterial infection can initiate prostate cancer. Proc. Natl Acad. Sci. USA 118, e2018976118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Olsson, J. et al. Chronic prostatic infection and inflammation by Propionibacterium acnes in a rat prostate infection model. PLoS ONE 7, e51434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shinohara, D. B. et al. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 73, 1007–1015 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fassi Fehri, L. et al. Prevalence of Propionibacterium acnes in diseased prostates and its inflammatory and transforming activity on prostate epithelial cells. Int. J. Med. Microbiol. 301, 69–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Nickel, J. C. et al. Search for microorganisms in men with urologic chronic pelvic pain syndrome: a culture-independent analysis in the MAPP research network. J. Urol. 194, 127–135 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sfanos, K. S., Yegnasubramanian, S., Nelson, W. G. & De Marzo, A. M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 15, 11–24 (2018).

    Article  PubMed  Google Scholar 

  78. Ly, L. K. et al. Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. J. Steroid. Biochem. Mol. Biol. 199, 105567 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, T. et al. An expanded metabolic pathway for androgen production by host-associated bacteria. bioRxiv https://doi.org/10.1101/2024.06.09.598130 (2024).

  80. Maślak, E. et al. A new approach to imaging and rapid microbiome identification for prostate cancer patients undergoing radiotherapy. Biomedicines 10, 1806 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Helissey, C. et al. Correlation between serum and urine biomarkers and the intensity of acute radiation cystitis in patients treated with radiation therapy for localized prostate cancer: protocol for the radiotoxicity bladder biomarkers (RABBIO) study. JMIR Res. Protoc. 12, e38362 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Alanee, S. et al. Prospective examination of the changes in the urinary microbiome induced by transrectal biopsy of the prostate using 16S rRNA gene analysis. Prostate Cancer Prostatic Dis. 22, 446–452 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, V. S. et al. A prospective evaluation of the prostate microbiome in malignant and benign tissue using transperineal biopsy. Prostate 84, 1251–1261 (2024).

    Article  PubMed  Google Scholar 

  84. Sfanos, K. S. et al. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68, 306–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Ahn, H. K., Kim, K., Park, J. & Kim, K. H. Urinary microbiome profile in men with genitourinary malignancies. Invest. Clin. Urol. 63, 569–576 (2022).

    Article  Google Scholar 

  86. Cumpanas, A. D. et al. MP64-02 A pilot study on the dark matter of clear cell renal cell carcinoma: the role of the urinary microbiome. J. Urol. 209, e880 (2023).

    Article  Google Scholar 

  87. Dizman, N. et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. 28, 704–712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cremonesi, E. et al. Gut microbiota modulate T cell trafficking into human colorectal cancer. Gut 67, 1984–1994 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Heidler, S., Lusuardi, L., Madersbacher, S. & Freibauer, C. The microbiome in benign renal tissue and in renal cell carcinoma. Urol. Int. 104, 247–252 (2019).

    Article  PubMed  Google Scholar 

  90. Wang, J. et al. Uncovering the microbiota in renal cell carcinoma tissue using 16S rRNA gene sequencing. J. Cancer Res. Clin. Oncol. 147, 481–491 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Liss, M. A. et al. Microbiome within primary tumor tissue from renal cell carcinoma may be associated with PD-L1 expression of the venous tumor thrombus. Adv Urol 2020, 9068068 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kovaleva, O. V. et al. Macrophage phenotype in combination with tumor microbiome composition predicts RCC patients’ survival: a pilot study. Biomedicines 10, 1516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jung, C. E. et al. Benchmarking urine storage and collection conditions for evaluating the female urinary microbiome. Sci Rep 9, 13409 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jones, C. B., White, J. R., Ernst, S. E., Sfanos, K. S. & Peiffer, L. B. Incorporation of data from multiple hypervariable regions when analyzing bacterial 16S rRNA gene sequencing data. Front Genet 13, 799615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brubaker, L. et al. Forming consensus to advance urobiome research. mSystems 6, e0137120 (2021).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.S. and S.L. researched data for the article. All authors contributed substantially to discussion of the content. N.S. and S.L. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Nirmish Singla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Alan Wolfe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

ACE index

Estimates species richness with greater sensitivity to rare operational taxonomic units.

Amplicon sequence variants richness

Counts the number of unique amplicon sequence variants richness observed in a sample.

Bray–Curtis distances

Non-phylogenetic distance metric that quantifies dissimilarity between two samples based on species abundance and proportion of shared species.

Chao1 index

Estimates total species richness in a sample by accounting for the presence of rare taxa.

Faith’s Phylogenetic Diversity test

Estimates biodiversity by calculating the total branch length of a phylogenetic tree for species in a sample.

Gini–Simpson index

Calculates the probability that two randomly selected organisms in a sample are different.

Jaccard

Measures the proportion of shared species between two samples, ranging from 0 (completely different) to 1 (identical).

Linear discriminant analysis effect size

Statistical method that identifies and ranks differentially abundant features (for example, taxa) between groups using linear discriminant analysis.

Observed species index

Counts the total number of unique species identified in a sample.

Operational taxonomic units

Groups of closely related microbial sequences used to classify microorganisms based on genetic similarity.

Pielou’s evenness

Measures how evenly species are distributed in a sample, ranging from 0 (uneven) to 1 (perfectly even).

Shannon index

Measures microbial diversity by incorporating species richness and evenness.

Simpson index

Calculates the probability that two randomly selected organisms in a sample are the same.

Unweighted Unifrac

Phylogenetic distance metric that compares microbial communities using the presence or absence of taxa, without abundance data.

Weighted Unifrac

Phylogenetic distance metric that compares microbial communities using the presence and relative abundance of taxa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Sfanos, K. & Singla, N. The role of the urinary microbiome in genitourinary cancers. Nat Rev Urol (2025). https://doi.org/10.1038/s41585-025-01011-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-025-01011-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer