Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances and controversies in meningeal biology

Abstract

The dura, arachnoid and pia mater, as the constituent layers of the meninges, along with cerebrospinal fluid in the subarachnoid space and ventricles, are essential protectors of the brain and spinal cord. Complemented by immune cells, blood vessels, lymphatic vessels and nerves, these connective tissue layers have held many secrets that have only recently begun to be revealed. Each meningeal layer is now known to have molecularly distinct types of fibroblasts. Cerebrospinal fluid clearance through peripheral lymphatics and lymph nodes is well documented, but its routes and flow dynamics are debated. Advances made in meningeal immune functions are also debated. This Review considers the cellular and molecular structure and function of the dura, arachnoid and pia mater in the context of conventional views, recent progress, and what is uncertain or unknown. The hallmarks of meningeal pathophysiology are identified toward developing a more complete understanding of the meninges in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hallmarks of meningeal pathophysiology.
Fig. 2: Composition of meningeal membranes, barriers, ECM and sites of hemorrhage.
Fig. 3: Intercellular junctions in arachnoid and pia.

Similar content being viewed by others

References

  1. Adeeb, N. et al. The intracranial arachnoid mater: a comprehensive review of its history, anatomy, imaging, and pathology. Childs Nerv. Syst. 29, 17–33 (2013).

    Article  PubMed  Google Scholar 

  2. Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Castro Dias, M., Mapunda, J. A., Vladymyrov, M. & Engelhardt, B. Structure and junctional complexes of endothelial, epithelial and glial brain barriers. Int. J. Mol. Sci. 20, 5372 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Derk, J., Jones, H. E., Como, C., Pawlikowski, B. & Siegenthaler, J. A. Living on the edge of the CNS: meninges cell diversity in health and disease. Front. Cell Neurosci. 15, 703944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Proulx, S. T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell. Mol. Life Sci. 78, 2429–2457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mapunda, J. A. et al. VE-cadherin in arachnoid and pia mater cells serves as a suitable landmark for in vivo imaging of CNS immune surveillance and inflammation. Nat. Commun. 14, 5837 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pietilä, R. et al. Molecular anatomy of adult mouse leptomeninges. Neuron 111, 3745–3764 (2023).

    Article  PubMed  Google Scholar 

  8. Ahn, J. H. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572, 62–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Rustenhoven, J. et al. Age-related alterations in meningeal immunity drive impaired CNS lymphatic drainage. J. Exp. Med. 220, e20221929 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoon, J. H. et al. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature 625, 768–777 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koh, L., Zakharov, A. & Johnston, M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res. 2, 6 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim, Y. C. et al. Immaturity of immune cells around the dural venous sinuses contributes to viral meningoencephalitis in neonates. Sci. Immunol. 8, eadg6155 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Witten, A., Marotta, D. & Cohen-Gadol, A. Developmental innervation of cranial dura mater and migraine headache: a narrative literature review. Headache 61, 569–575 (2021).

    Article  PubMed  Google Scholar 

  14. Levy, D. & Moskowitz, M. A. Meningeal mechanisms and the migraine connection. Annu. Rev. Neurosci. 46, 39–58 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nabeshima, S., Reese, T. S., Landis, D. M. & Brightman, M. W. Junctions in the meninges and marginal glia. J. Comp. Neurol. 164, 127–169 (1975).

    Article  CAS  PubMed  Google Scholar 

  16. Lin, M. S. Subdural lesions linking additional intracranial spaces and chronic subdural hematomas: a narrative review with mutual correlation and possible mechanisms behind high recurrence. Diagnostics 13, 235 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mortazavi, M. M. et al. Subarachnoid trabeculae: a comprehensive review of their embryology, histology, morphology, and surgical significance. World Neurosurg. 111, 279–290 (2018).

    Article  PubMed  Google Scholar 

  18. Walsh, D. R. et al. Mechanical properties of the cranial meninges: a systematic review. J. Neurotrauma 38, 1748–1761 (2021).

    Article  PubMed  Google Scholar 

  19. Bonney, S. K., Sullivan, L. T., Cherry, T. J., Daneman, R. & Shih, A. Y. Distinct features of brain perivascular fibroblasts and mural cells revealed by in vivo two-photon imaging. J. Cereb. Blood Flow. Metab. 42, 966–978 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Vanlandewijck et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. DeSisto, J. et al. Single-cell transcriptomic analyses of the developing meninges reveal meningeal fibroblast diversity and function. Dev. Cell 54, 43–59 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    Article  PubMed  Google Scholar 

  23. Rebejac, J. et al. Meningeal macrophages protect against viral neuroinfection. Immunity 55, 2103–2117 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Kolabas, Z. I. et al. Distinct molecular profiles of skull bone marrow in health and neurological disorders. Cell 186, 3706–3725 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Møllgård, K. et al. A mesothelium divides the subarachnoid space into functional compartments. Science 379, 84–88 (2023).

    Article  PubMed  Google Scholar 

  26. Rømer, T. B. & Benros, M. E. The discovery of a fourth meninges: potential implications for brain disorders. Brain Behav. Immun. 111, 1–3 (2023).

    Article  PubMed  Google Scholar 

  27. Zhao, H. et al. Connecting the dots: the cerebral lymphatic system as a bridge between the central nervous system and peripheral system in health and disease. Aging Dis. 15, 115–152 (2023).

    Article  Google Scholar 

  28. Pla, V. et al. Structural characterization of SLYM—a 4th meningeal membrane. Fluids Barriers CNS 20, 93 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Siegenthaler, J. Comments on Møllgård et al. A mesothelium divides the subarachnoid space into functional compartments. Science https://doi.org/10.1126/science.adc8810 (2023).

  30. Betsholtz, C. et al. Comments on Møllgård et al. Is the subarachnoid space divided by a newly discovered 4th layer of meninges? Science https://doi.org/10.1126/science.adc8810 (2023).

  31. Betsholtz, C. et al. Comments on Møllgård et al. Concerns of rigor and objectivity. Science https://doi.org/10.1126/science.adc8810 (2023).

  32. Rieck, J. & Veh, R.W. Comments on Møllgård et al. There are no separate functional compartments within the subarachnoid space. Science https://doi.org/10.1126/science.adc8810 (2023).

  33. Pan, S. & Strahle, J. Comments on Møllgård et al. A mesothelium divides the subarachnoid space into functional compartments. Science https://doi.org/10.1126/science.adc8810 (2023).

  34. Hartmann, K. et al. Is the central nervous system enclosed by a mesothel? Science https://doi.org/10.1126/science.adc8810 (2023).

  35. Daneman, R. & Engelhardt, B. Brain barriers in health and disease. Neurobiol. Dis. 107, 1–3 (2017).

    Article  PubMed  Google Scholar 

  36. Louveau, A. et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J. Clin. Invest. 127, 3210–3219 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Virenque, A. et al. Significance of developmental meningeal lymphatic dysfunction in experimental post-traumatic injury. Brain Behav. Immun. Health 23, 100466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, Z. et al. Blockade of VEGFR3 signaling leads to functional impairment of dural lymphatic vessels without affecting autoimmune neuroinflammation. Sci. Immunol. 8, eabq0375 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Antila, S. et al. Sustained meningeal lymphatic vessel atrophy or expansion does not alter Alzheimer’s disease-related amyloid pathology. Nat. Cardiovasc. Res. 3, 474–491 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Krisch, B., Leonhardt, H. & Oksche, A. The meningeal compartments of the median eminence and the cortex. A comparative analysis in the rat. Cell Tissue Res. 228, 597–640 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. Farmer, D. T. et al. The developing mouse coronal suture at single-cell resolution. Nat. Commun. 12, 4797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, J., Rattner, A. & Nathans, J. Bacterial meningitis in the early postnatal mouse studied at single-cell resolution. Elife 12, e86130 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oda, Y. & Nakanishi, I. Ultrastructure of the mouse leptomeninx. J. Comp. Neurol. 225, 448–457 (1984).

    Article  CAS  PubMed  Google Scholar 

  45. McLone, D. G. & Bondareff, W. Developmental morphology of the subarachnoid space and contiguous structures in the mouse. Am. J. Anat. 142, 273–293 (1975).

    Article  CAS  PubMed  Google Scholar 

  46. Derk, J. et al. Formation and function of the meningeal arachnoid barrier around the developing mouse brain. Dev. Cell 58, 635–644 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shah, T. et al. Arachnoid granulations are lymphatic conduits that communicate with bone marrow and dura-arachnoid stroma. J. Exp. Med. 220, e20220618 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Brøchner, C. B., Holst, C. B. & Møllgård, K. Outer brain barriers in rat and human development. Front. Neurosci. 9, 75 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alcolado, R., Weller, R. O., Parrish, E. P. & Garrod, D. The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol. Appl. Neurobiol. 14, 1–17 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Allen, D. J. & Low, F. N. Scanning electron microscopy of the subarachnoid space in the dog. III. Cranial levels. J. Comp. Neurol. 161, 515–539 (1975).

    Article  CAS  PubMed  Google Scholar 

  51. Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O. & Møllgård, K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol. 135, 363–385 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Lendahl, U., Muhl, L. & Betsholtz, C. Identification, discrimination and heterogeneity of fibroblasts. Nat. Commun. 13, 3409 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Key, A. & Retzius, G. Studien in der Anatomie des Nervensystems und des Bindegewebes (Samson & Wallin, 1875).

  54. Li, J., Zhou, J. & Shi, Y. Scanning electron microscopy of human cerebral meningeal stomata. Ann. Anat. 178, 259–261 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Soderblom, C. et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J. Neurosci. 33, 13882–13887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jones, H. E. et al. Meningeal origins and dynamics of perivascular fibroblast development on the mouse cerebral vasculature. Development 150, dev201805 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barshes, N., Demopoulos, A. & Engelhard, H. H. Anatomy and physiology of the leptomeninges and CSF space. Cancer Treat. Res. 125, 1–16 (2005).

    Article  PubMed  Google Scholar 

  58. Fabris, G., Suar, Z. M. & Kurt, M. Micromechanical heterogeneity of the rat pia-arachnoid complex. Acta Biomater. 100, 29–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Niestrawska, J. A. et al. Morpho-mechanical mapping of human dura mater microstructure. Acta Biomater. 170, 86–96 (2023).

    Article  PubMed  Google Scholar 

  60. Kim, D. J. et al. Continuous monitoring of the Monro–Kellie doctrine: is it possible? J. Neurotrauma 29, 1354–1363 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Maikos, J. T., Elias, R. A. & Shreiber, D. I. Mechanical properties of dura mater from the rat brain and spinal cord. J. Neurotrauma 25, 38–51 (2008).

    Article  PubMed  Google Scholar 

  62. Li, Y., Zhang, W., Lu, Y. C. & Wu, C. W. Hyper-viscoelastic mechanical behavior of cranial pia mater in tension. Clin. Biomech. 80, 105108 (2020).

    Article  CAS  Google Scholar 

  63. Khaing, Z. Z. et al. Temporal and spatial evolution of raised intraspinal pressure after traumatic spinal cord injury. J. Neurotrauma 34, 645–651 (2017).

    Article  PubMed  Google Scholar 

  64. Haines, D. E. On the question of a subdural space. Anat. Rec. 230, 3–21 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Orlin, J. R., Osen, K. K. & Hovig, T. Subdural compartment in pig: a morphologic study with blood and horseradish peroxidase infused subdurally. Anat. Rec. 230, 22–37 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Andres, K. H. [On the fine structure of the arachnoidea and dura mater of mammals]. Z. Zellforsch. Mikrosk. Anat. 79, 272–295 (1967).

    Article  CAS  PubMed  Google Scholar 

  67. Gow, A. et al. CNS myelin and sertoli cell tight junction strands are absent in Osp/Claudin-11 null mice. Cell 99, 649–659 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Iwamoto, N., Higashi, T. & Furuse, M. Localization of angulin-1/LSR and tricellulin at tricellular contacts of brain and retinal endothelial cells in vivo. Cell Struct. Funct. 39, 1–8 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Sohet, F. et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood–brain barrier formation. J. Cell Biol. 208, 703–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yasuda, K. et al. Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier. Drug Metab. Dispos. 41, 923–931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, Z., Tachikawa, M., Uchida, Y. & Terasaki, T. Drug clearance from cerebrospinal fluid mediated by organic anion transporters 1 (Slc22a6) and 3 (Slc22a8) at arachnoid membrane of rats. Mol. Pharm. 15, 911–922 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Uchida, Y. et al. A human blood-arachnoid barrier atlas of transporters, receptors, enzymes, and tight junction and marker proteins: comparison with dog and pig in absolute abundance. J. Neurochem. 161, 187–208 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Brightman, M. W. & Reese, T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rennels, M. L., Gregory, T. F., Blaumanis, O. R., Fujimoto, K. & Grady, P. A. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 326, 47–63 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Hutchings, M. & Weller, R. O. Anatomical relationships of the pia mater to cerebral blood vessels in man. J. Neurosurg. 65, 316–325 (1986).

    Article  CAS  PubMed  Google Scholar 

  77. Walsh, D. R., Lynch, J. J., DT, O. C., Newport, D. T. & Mulvihill, J. J. E. Mechanical and structural characterisation of the dural venous sinuses. Sci. Rep. 10, 21763 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saboori, P. & Sadegh, A. Histology and morphology of the brain subarachnoid trabeculae. Anat. Res. Int. 2015, 279814 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Shapiro, M. et al. Neuroanatomy of cranial dural vessels: implications for subdural hematoma embolization. J. Neurointerv. Surg. 13, 471–477 (2021).

    Article  PubMed  Google Scholar 

  80. Karatas, D. et al. A new classification of parasagittal bridging veins based on their configurations and drainage routes pertinent to interhemispheric approaches: a surgical anatomical study. J. Neurosurg. 140, 271–281 (2023).

    Article  PubMed  Google Scholar 

  81. Smyth, L. C. D. et al. Identification of direct connections between the dura and the brain. Nature 627, 165–173 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gailloud, P. Spinal vascular anatomy. Neuroimaging Clin. N. Am. 29, 615–633 (2019).

    Article  PubMed  Google Scholar 

  83. Vajkoczy, P., Laschinger, M. & Engelhardt, B. Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J. Clin. Invest. 108, 557–565 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rahimi, A. et al. The unmet global burden of cranial epidural hematomas: a systematic review and meta-analysis. Clin. Neurol. Neurosurg. 219, 107313 (2022).

    Article  PubMed  Google Scholar 

  85. Dodd, W. S. et al. Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: a review. J. Am. Heart Assoc. 10, e021845 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alsbrook, D. L. et al. Pathophysiology of early brain injury and its association with delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a review of current literature. J. Clin. Med. 12, 1015 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ma, Q. et al. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol. 137, 151–165 (2019).

    Article  PubMed  Google Scholar 

  89. Wiig, H. & Reed, R. K. Rat brain interstitial fluid pressure measured with micropipettes. Am. J. Physiol. 244, H239–H246 (1983).

    CAS  PubMed  Google Scholar 

  90. Weed, L. H. Studies on cerebro-spinal fluid. No. IV: the dual source of cerebro-spinal fluid. J. Med. Res. 31, 93–118 (1914).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cserr, H. F. in Hydrocephalus (eds Shapiro, K. et al.) 59–68 (Raven, 1984).

  92. Carare, R. O. et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl Neurobiol. 34, 131–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Weed, L. H. Studies on cerebro-spinal fluid. No. III: The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J. Med. Res. 31, 51–91 (1914).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yamashima, T., Kida, S. & Yamamoto, S. Ultrastructural comparison of arachnoid villi and meningiomas in man. Mod. Pathol. 1, 224–234 (1988).

    CAS  PubMed  Google Scholar 

  95. Welch, K. & Friedman, V. The cerebrospinal fluid valves. Brain 83, 454–469 (1960).

    Article  CAS  PubMed  Google Scholar 

  96. Radoš, M., Živko, M., Periša, A., Orešković, D. & Klarica, M. No arachnoid granulations—no problems: number, size, and distribution of arachnoid granulations from birth to 80 years of age. Front. Aging Neurosci. 13, 698865 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Spera, I. et al. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. EBioMedicine 91, 104558 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ma, Q., Decker, Y., Muller, A., Ineichen, B. V. & Proulx, S. T. Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels. J. Exp. Med. 216, 2492–2502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hsu, M. et al. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat. Immunol. 23, 581–593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Proulx, S. T. & Engelhardt, B. Central nervous system zoning: how brain barriers establish subdivisions for CNS immune privilege and immune surveillance. J. Intern. Med. 292, 47–67 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Masuda, T. et al. Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 604, 740–748 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Lodygin, D. et al. A combination of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in real time during CNS autoimmunity. Nat. Med. 19, 784–790 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Hannocks, M. J. et al. The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol. 75-76, 102–113 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Marchetti, L. & Engelhardt, B. Immune cell trafficking across the blood–brain barrier in the absence and presence of neuroinflammation. Vasc. Biol. 2, H1–H18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mundt, S., Greter, M. & Becher, B. The CNS mononuclear phagocyte system in health and disease. Neuron 110, 3497–3512 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Gerganova, G., Riddell, A. & Miller, A. A. CNS border-associated macrophages in the homeostatic and ischaemic brain. Pharmacol. Ther. 240, 108220 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Mazzitelli, J. A. et al. Skull bone marrow channels as immune gateways to the central nervous system. Nat. Neurosci. 26, 2052–2062 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Schafflick, D. et al. Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat. Neurosci. 24, 1225–1234 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mazzitelli, J. A. et al. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat. Neurosci. 25, 555–560 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Uchida, Y. et al. Involvement of Claudin-11 in disruption of blood–brain, –spinal cord, and –arachnoid barriers in multiple sclerosis. Mol. Neurobiol. 56, 2039–2056 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, Y. et al. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat. Immunol. 23, 1714–1725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Santisteban, M. M. et al. Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension. Nat. Neurosci. 27, 63–77 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Willis, T. Cerebri Anatome, Cui Accessit Nervorum Descriptio et Usus (J. Flesher, 1664).

  118. Wiggers, A. et al. Brain barriers and their potential role in migraine pathophysiology. J. Headache Pain. 23, 16 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kuburas, A. & Russo, A. F. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J. Headache Pain. 24, 34 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Noseda, R., Melo-Carrillo, A., Nir, R. R., Strassman, A. M. & Burstein, R. Non-trigeminal nociceptive innervation of the posterior dura: implications to occipital headache. J. Neurosci. 39, 1867–1880 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Groen, G. J., Baljet, B. & Drukker, J. The innervation of the spinal dura mater: anatomy and clinical implications. Acta Neurochir. 92, 39–46 (1988).

    Article  CAS  PubMed  Google Scholar 

  122. Iyengar, S., Johnson, K. W., Ossipov, M. H. & Aurora, S. K. CGRP and the trigeminal system in migraine. Headache 59, 659–681 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Pinho-Ribeiro, F. A. et al. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature 615, 472–481 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Blaeser, A. S. et al. Trigeminal afferents sense locomotion-related meningeal deformations. Cell Rep. 41, 111648 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mikhailov, N. et al. Mechanosensitive meningeal nociception via Piezo channels: implications for pulsatile pain in migraine? Neuropharmacology 149, 113–123 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Andres, K. H., von During, M., Muszynski, K. & Schmidt, R. F. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat. Embryol. 175, 289–301 (1987).

    Article  CAS  Google Scholar 

  127. Vandenabeele, F., Creemers, J. & Lambrichts, I. Ultrastructure of the human spinal arachnoid mater and dura mater. J. Anat. 189, 417–430 (1996).

    PubMed  PubMed Central  Google Scholar 

  128. Momose, Y., Kohno, K. & Ito, R. Ultrastructural study on the meninx of the goldfish brain. J. Comp. Neurol. 270, 327–336 (1988).

    Article  CAS  PubMed  Google Scholar 

  129. Rodriguez-Peralta, L. A. The role of the meningeal tissues in the hematoencephalic barrier. J. Comp. Neurol. 107, 455–473 (1957).

    Article  CAS  PubMed  Google Scholar 

  130. Krisch, B., Leonhardt, H. & Oksche, A. Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res. 238, 459–474 (1984).

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, E. T., Inman, C. B. & Weller, R. O. Interrelationships of the pia mater and the perivascular (Virchow–Robin) spaces in the human cerebrum. J. Anat. 170, 111–123 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hannocks, M. -J. et al. Molecular characterization of perivascular drainage pathways in the murine brain. J. Cereb. Blood Flow. Metab. 38, 669–686 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Petrova, T. V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21, 4593–4599 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lu, M. H., Huang, C. C., Pan, M. R., Chen, H. H. & Hung, W. C. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin. Cancer Res. 18, 6416–6425 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Mestre, H. et al. Periarteriolar spaces modulate cerebrospinal fluid transport into brain and demonstrate altered morphology in aging and Alzheimer’s disease. Nat. Commun. 13, 3897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schiavinato, A., Przyklenk, M., Kobbe, B., Paulsson, M. & Wagener, R. Collagen type VI is the antigen recognized by the ER-TR7 antibody. Eur. J. Immunol. 51, 2345–2347 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Holter, K. E. et al. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc. Natl Acad. Sci. USA 114, 9894–9899 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Abbott, N. J., Pizzo, M. E., Preston, J. E., Janigro, D. & Thorne, R. G. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol. 135, 387–407 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Hladky, S. B. & Barrand, M. A. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19, 9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zakharov, A. et al. Integrating the roles of extracranial lymphatics and intracranial veins in cerebrospinal fluid absorption in sheep. Microvasc. Res. 67, 96–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Flexner, L. B. Some problems of the origin, circulation and absorption of the cerebrospinal fluid. Q. Rev. Biol. 8, 397–422 (1933).

    Article  CAS  Google Scholar 

  142. Ineichen, B. V. et al. Perivascular spaces and their role in neuroinflammation. Neuron 110, 3566–3581 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nicholas, D. S. & Weller, R. O. The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J. Neurosurg. 69, 276–282 (1988).

    Article  CAS  PubMed  Google Scholar 

  144. Wolburg, H. & Mack, A. F. Comment on the topology of mammalian blood–cerebrospinal fluid barrier. Neurol. Psych. Brain Res. 20, 70–72 (2014).

    Article  Google Scholar 

  145. Hartmann, K., Stein, K.-P., Neyazi, B. & Sandalcioglu, I. E. First in vivo visualization of the human subarachnoid space and brain cortex via optical coherence tomography. Ther. Adv. Neurol. Disord. 12, 1756286419843040 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ringstad, G. & Eide, P. K. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat. Commun. 11, 354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Eide, P. K. et al. Clinical application of intrathecal gadobutrol for assessment of cerebrospinal fluid tracer clearance to blood. JCI Insight 6, e147063 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Krisch, B. Ultrastructure of the meninges at the site of penetration of veins through the dura mater, with particular reference to Pacchionian granulations. Investigations in the rat and two species of New-World monkeys (Cebus apella, Callitrix jacchus). Cell Tissue Res. 251, 621–631 (1988).

    Article  CAS  PubMed  Google Scholar 

  149. Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci. 22, 317–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Pulous, F. E. et al. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat. Neurosci. 25, 567–576 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Phoenix, T. N. et al. Medulloblastoma genotype dictates blood–brain barrier phenotype. Cancer Cell 29, 508–522 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funding from the Swedish Research Council (2015-00550, to C.B.); Swedish Cancer Society (2018/449, 2018/1154 and 211714Pj, to C.B.); Knut and Alice Wallenberg Foundation (2020.0057, to C.B.); Swedish Brain Foundation (ALZ2019-0130 and ALZ2022-0005, to C.B.); Erling-Persson Family Foundation (to C.B.); Leducq Foundation (22CVD01 and 23CVD02, to C.B.) Fidelity Bermuda Foundation (to S.T.P. and B.E.); Swiss National Science Foundation (310030_189080, to B.E.; 310030_189226, to S.T.P.; and CRSII5_213535, to S.T.P. and B.E.); Republic of Korea Ministry of Science and Information and Communication Technology to the Institute for Basic Science (IBS-R025-D1-2015, to G.Y.K.); National Heart, Lung, and Blood Institute grants (R01 HL143896, R01 HL059157 and R01 HL127402, to D.M.D.); and National Institute of Neurological Disorders and Stroke grant (R01 NS098273, to J.S.) from the US National Institutes of Health. We thank H. J. Shin for drawing Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

C.B., B.E., G.Y.K., D.M.D., S.T.P. and J.S. conceived the theme, scope and structure of the review, wrote the manuscript and drafted the figures.

Corresponding author

Correspondence to Julie Siegenthaler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Ali Erturk, Axel Montagne, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betsholtz, C., Engelhardt, B., Koh, G.Y. et al. Advances and controversies in meningeal biology. Nat Neurosci 27, 2056–2072 (2024). https://doi.org/10.1038/s41593-024-01701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-024-01701-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing