Table 16 Results in multiclass hope speech classification with tuned parameters.
From: Analyzing hope speech from psycholinguistic and emotional perspectives
Models | Features | Weighted | Macro | Accuracy | ||||
---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 | Precision | Recall | F1 | |||
LightGBM | N-grams | 0.6412 | 0.6596 | 0.6448 | 0.5715 | 0.5213 | 0.5368 | 0.6596 |
LIWC Emotions Sentiments | 0.6563 | 0.6747 | 0.6579 | 0.5968 | 0.5312 | 0.5507 | 0.6747 | |
LIWC Emotions Sentiments N-grams | 0.6772 | 0.6923 | 0.6793 | 0.6181 | 0.5613 | 0.5800 | 0.6923 | |
CatBoost | N-grams | 0.6407 | 0.6620 | 0.6427 | 0.5811 | 0.5161 | 0.5350 | 0.6620 |
LIWC Emotions Sentiments | 0.6558 | 0.6724 | 0.6515 | 0.6096 | 0.5197 | 0.5414 | 0.6724 | |
LIWC Emotions Sentiments N-grams | 0.6645 | 0.6789 | 0.6586 | 0.6265 | 0.5295 | 0.5539 | 0.6789 | |
XGBoost | N-grams | 0.6334 | 0.6526 | 0.6387 | 0.5582 | 0.5168 | 0.5308 | 0.6526 |
LIWC Emotions Sentiments | 0.6469 | 0.6650 | 0.6493 | 0.5826 | 0.5234 | 0.5412 | 0.6650 | |
LIWC Emotions Sentiments N-grams | 0.6706 | 0.6854 | 0.6734 | 0.6078 | 0.5572 | 0.5745 | 0.6854 |