Table 1 AP comparison on the XD-Violence dataset.

From: Weakly supervised video anomaly detection based on hyperbolic space

Supervision

Method

Feature

T

AP (%)

Parameters (M)

Un- supervision

SVM baseline

–

–

50.78

–

Hasan et al.28

–

–

30.77

–

OCSVM29

–

–

27.25

–

Weakly-supervision

Sultani et al. (2018)2

\(C3D^{RGB}\)

32

73.20

2.11

HL-NET (2020)18

\(I3D^{RGB}\)

200

73.67

0.84

HL-NET (2020)18

\(I3D^{RGB} \& VGGish\)

200

78.64

0.84

RTFM (2021)4

\(I3D^{RGB}\)

32

77.81

24.72

MSL (2022)30

\(VideoSwin^{RGB}\)

32

78.28

–

CU-NET(2023)31

\(I3D^{RGB}\)

32

78.74

2.11

CU-NET(2023)31

\(I3D^{RGB} \& VGGish\)

32

81.43

2.11

MGFN (2022)5

\(I3D^{RGB}\)

32

79.19

28.65

S3R (2022)32

\(I3D^{RGB}\)

32

80.26

81.44

UR-DMU (2023)7

\(I3D^{RGB}\)

200

81.66

6.49

UR-DMU (2023)7

\(I3D^{RGB} \& VGGish\)

200

81.77

6.49

Pang et al.(2021)33

\(I3D^{RGB} \& VGGish\)

–

81.69

–

Ours

\(I3D^{RGB}\)

150

82.67

0.61

  1. The top performance is highlighted in bold.