Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Seasonal CO2 amplitude in northern high latitudes

Abstract

Global climate change is influencing the seasonal cycle amplitude of atmospheric CO2 (SCA), with the strongest increases at northern high latitudes (NHL; >45° N). In this Review, we explore the changes and underlying mechanisms influencing the NHL SCA, focusing on Arctic and boreal terrestrial ecosystems. Latitudinal gradients in the SCA are largely governed by seasonality in temperature and primary production, and their influence on ecosystem carbon dynamics. In the NHL, the SCA has increased by 50% since the 1960s, mostly due to enhanced seasonality in net carbon dioxide (CO2) exchange in NHL terrestrial ecosystems. Temperature most strongly influences this trend, owing to warming impacts on growing season length and plant productivity; CO2 fertilization effects have a secondary role. Eurasian boreal ecosystems exert the strongest influence on the SCA, and spring and summer are the most influential seasons. Enhanced ecosystem respiration during the non-growing season exhibits most uncertainty in the SCA response to global and landscape drivers. Observed changes in the seasonal amplitude are projected to continue. Key priorities include extending carbon flux and ecosystem observation networks, particularly in tundra ecosystems, and including drivers such as vegetation cover and permafrost in process models to better simulate seasonal dynamics of net CO2 exchange in the NHL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed and projected SCAP-T.
Fig. 2: Observed trends in SCAP-T.
Fig. 3: Observed peak and trough trends.
Fig. 4: Seasonal variation in CO2 fluxes across the northern high latitudes.
Fig. 5: Relative influence of mechanisms driving increases in SCA.
Fig. 6: Environmental drivers influencing seasonal dynamics of SCA.

Similar content being viewed by others

Data availability

All synthesized data are publicly available. The in situ carbon dioxide (CO2) data are from the archive of the Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA)177, and the Copernicus Atmospheric Modelling Service (CAMS) global inversion-optimized CO2 concentration data are from the Copernicus Atmosphere Monitoring Service178. Code is available from the corresponding authors upon request.

References

  1. Keeling, R. F. & Graven, H. D. Insights from time series of atmospheric carbon dioxide and related tracers. Annu. Rev. Environ. Resour. 46, 85–110 (2021).

    Article  Google Scholar 

  2. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    Article  Google Scholar 

  3. Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

    Article  Google Scholar 

  4. Keeling, C. D. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12, 200–203 (1960).

    Article  Google Scholar 

  5. Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).

    Article  CAS  Google Scholar 

  6. Piao, S. L. et al. On the causes of trends in the seasonal amplitude of atmospheric CO2. Glob. Change Biol. 24, 608–616 (2018).

    Article  Google Scholar 

  7. Buermann, W. et al. The changing carbon cycle at Mauna Loa observatory. Proc. Natl Acad. Sci. USA 104, 4249–4254 (2007).

    Article  CAS  Google Scholar 

  8. Forkel, M. et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351, 696–699 (2016).

    Article  CAS  Google Scholar 

  9. Wang, K. et al. Causes of slowing-down seasonal CO2 amplitude at Mauna Loa. Glob. Change Biol. 26, 4462–4477 (2020).

    Article  Google Scholar 

  10. Randerson, J. T., Thompson, M. V., Conway, T. J., Fung, I. Y. & Field, C. B. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Glob. Biogeochem. Cycles 11, 535–560 (1997).

    Article  CAS  Google Scholar 

  11. Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).

    Article  CAS  Google Scholar 

  12. Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).

    Article  CAS  Google Scholar 

  13. Watts, J. D. et al. Soil respiration strongly offsets carbon uptake in Alaska and northwest Canada. Environ. Res. Lett. 16, 084051 (2021).

    Article  CAS  Google Scholar 

  14. Bastos, A. et al. Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of northern hemisphere CO2 exchange. Atmos. Chem. Phys. 19, 12361–12375 (2019).

    Article  CAS  Google Scholar 

  15. Dargaville, R. et al. Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: results from transient simulations considering increasing CO2, climate, and land‐use effects. Glob. Biogeochem. Cycles 16, https://doi.org/10.1029/2001GB001426 (2002).

  16. Ito, A. et al. Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrial biosphere models. Tellus B 68, https://doi.org/10.3402/tellusb.v68.28968 (2016).

  17. Zhao, F. et al. Role of CO2, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: a multimodel analysis. Biogeosciences 13, 5121–5137 (2016).

    Article  CAS  Google Scholar 

  18. Gray, J. M. et al. Direct human influence on atmospheric CO2 seasonality from increased cropland productivity. Nature 515, 398–401 (2014).

    Article  CAS  Google Scholar 

  19. Natali, S. M. et al. Incorporating permafrost into climate mitigation and adaptation policy. Environ. Res. Lett. 17, 091001 (2022).

    Article  Google Scholar 

  20. Keeling, C. D., Whorf, T. P., Wahlen, M. & Van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).

    Article  CAS  Google Scholar 

  21. Pearman, G. & Hyson, P. The annual variation of atmospheric CO2 concentration observed in the northern hemisphere. J. Geophys. Res. 86, 9839–9843 (1981).

    Article  CAS  Google Scholar 

  22. Bacastow, R., Keeling, C. & Whorf, T. Seasonal amplitude increase in atmospheric CO2 concentration at Mauna Loa, Hawaii, 1959–1982. J. Geophys. Res. Atmos. 90, 10529–10540 (1985).

    Article  Google Scholar 

  23. Yun, J. M. et al. Enhance seasonal amplitude of atmospheric CO2 by the changing Southern Ocean carbon sink. Sci. Adv. 8, eabq0220 (2022).

    Article  CAS  Google Scholar 

  24. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    Article  CAS  Google Scholar 

  25. Keeling, C. D., Chin, J. & Whorf, T. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996).

    Article  CAS  Google Scholar 

  26. Liu, Z. et al. Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions. Nat. Commun. 13, 5626 (2022).

    Article  CAS  Google Scholar 

  27. Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).

    Article  Google Scholar 

  28. Zeng, N. et al. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature 515, 394–397 (2014).

    Article  CAS  Google Scholar 

  29. Lin, X. et al. Siberian and temperate ecosystems shape northern hemisphere atmospheric CO2 seasonal amplification. Proc. Natl Acad. Sci. USA 117, 21079–21087 (2020).

    Article  CAS  Google Scholar 

  30. Barnes, E. A., Parazoo, N., Orbe, C. & Denning, A. S. Isentropic transport and the seasonal cycle amplitude of CO2. J. Geophys. Res. Atmos. 121, 8106–8124 (2016).

    Article  CAS  Google Scholar 

  31. Schuh, A. E. et al. Quantifying the impact of atmospheric transport uncertainty on CO2 surface flux estimates. Glob. Biogeochem. Cycles 33, 484–500 (2019).

    Article  CAS  Google Scholar 

  32. Schuh, A. E. & Jacobson, A. R. Uncertainty in parameterized convection remains a key obstacle for estimating surface fluxes of carbon dioxide. Atmos. Chem. Phys. 23, 6285–6297 (2023).

    Article  CAS  Google Scholar 

  33. Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).

    Article  CAS  Google Scholar 

  34. Hu, L. et al. COS-derived GPP relationships with temperature and light help explain high-latitude atmospheric CO2 seasonal cycle amplification. Proc. Natl Acad. Sci. USA 118, e2103423118 (2021).

    Article  CAS  Google Scholar 

  35. Liu, Z. et al. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Glob. Chang. Biol. 26, 682–696 (2020).

    Article  Google Scholar 

  36. Myers-Smith, I. H. et al. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr. 89, e01351 (2019).

    Article  Google Scholar 

  37. Assmann, J. J. et al. Local snow melt and temperature — but not regional sea ice — explain variation in spring phenology in coastal Arctic tundra. Glob. Change Biol. 25, 2258–2274 (2019).

    Article  Google Scholar 

  38. Welp, L. R., Randerson, J. T. & Liu, H. P. The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric. For. Meteorol. 147, 172–185 (2007).

    Article  Google Scholar 

  39. Ueyama, M., Iwata, H. & Harazono, Y. Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement. Glob. Chang. Biol. 20, 1161–1173 (2014).

    Article  Google Scholar 

  40. Barichivich, J. et al. Large‐scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19, 3167–3183 (2013).

    Article  Google Scholar 

  41. Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    Article  CAS  Google Scholar 

  42. Parida, B. R. & Buermann, W. Increasing summer drying in North American ecosystems in response to longer nonfrozen periods. Geophys. Res. Lett. 41, 5476–5483 (2014).

    Article  Google Scholar 

  43. Buermann, W., Bikash, P. R., Jung, M., Burn, D. H. & Reichstein, M. Earlier springs decrease peak summer productivity in North American boreal forests. Environ. Res. Lett. 8, 024027 (2013).

    Article  Google Scholar 

  44. Angert, A. et al. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl Acad. Sci. USA 102, 10823–10827 (2005).

    Article  CAS  Google Scholar 

  45. Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).

    Article  CAS  Google Scholar 

  46. Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl Acad. Sci. USA 114, 5361–5366 (2017).

    Article  CAS  Google Scholar 

  47. Jeong, S. J. et al. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO2 measurements. Sci. Adv. 4, eaao1167 (2018).

    Article  Google Scholar 

  48. Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).

    Article  CAS  Google Scholar 

  49. Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).

    Article  CAS  Google Scholar 

  50. Byrne, B. et al. Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia. Biogeosciences 19, 4779–4799 (2022).

    Article  CAS  Google Scholar 

  51. Mudryk, L. et al. Historical northern hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere 14, 2495–2514 (2020).

    Article  Google Scholar 

  52. Yu, Z. et al. Decrease in winter respiration explains 25% of the annual northern forest carbon sink enhancement over the last 30 years. Glob. Ecol. Biogeogr. 25, 586–595 (2016).

    Article  Google Scholar 

  53. Wooster, M. J. & Zhang, Y. H. Boreal forest fires burn less intensely in Russia than in North America. Geophys. Res. Lett. 31, https://doi.org/10.1029/2004gl020805 (2004).

  54. de Groot, W. J. et al. A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manage. 294, 23–34 (2013).

    Article  Google Scholar 

  55. Randerson, J. T. et al. The impact of boreal forest fire on climate warming. Science 314, 1130–1132 (2006).

    Article  CAS  Google Scholar 

  56. Pulliainen, J. et al. Patterns and trends of northern hemisphere snow mass from 1980 to 2018. Nature 581, 294–298 (2020).

    Article  CAS  Google Scholar 

  57. Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).

    Article  Google Scholar 

  58. Winkler, A. J., Myneni, R. B., Alexandrov, G. A. & Brovkin, V. Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun. 10, 885 (2019).

    Article  Google Scholar 

  59. Xu, L. et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change 3, 581–586 (2013).

    Article  Google Scholar 

  60. Cortés, J. et al. Where are global vegetation greening and browning trends significant? Geophys. Res. Lett. 48, e2020GL091496 (2021).

    Article  Google Scholar 

  61. Berner, L. T. & Goetz, S. J. Satellite observations document trends consistent with a boreal forest biome shift. Glob. Chang. Biol. 28, 3275–3292 (2022).

    Article  CAS  Google Scholar 

  62. Barichivich, J. et al. Temperature and snow-mediated moisture controls of summer photosynthetic activity in northern terrestrial ecosystems between 1982 and 2011. Remote. Sens. 6, 1390 (2014).

    Article  Google Scholar 

  63. Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).

    Article  CAS  Google Scholar 

  64. Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).

    Article  CAS  Google Scholar 

  65. Bond-Lamberty, B., Peckham, S. D., Ahl, D. E. & Gower, S. T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450, 89–92 (2007).

    Article  CAS  Google Scholar 

  66. Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote. Sens. Environ. 176, 1–16 (2016).

    Article  Google Scholar 

  67. Bi, J., Xu, L., Samanta, A., Zhu, Z. & Myneni, R. Divergent Arctic-boreal vegetation changes between North America and Eurasia over the past 30 years. Remote. Sens. 5, 2093–2112 (2013).

    Article  Google Scholar 

  68. Zhu, P. et al. Recent warming has resulted in smaller gains in net carbon uptake in northern high latitudes. J. Clim. 32, 5849–5863 (2019).

    Article  Google Scholar 

  69. Li, Z.-L. et al. Changes in net ecosystem exchange of CO2 in Arctic and their relationships with climate change during 2002–2017. Adv. Clim. Change Res. 12, 475–481 (2021).

    Article  Google Scholar 

  70. Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).

    Article  Google Scholar 

  71. Chylek, P. et al. Annual mean arctic amplification 1970–2020: observed and simulated by CMIP6 climate models. Geophys. Res. Lett. 49, e2022GL099371 (2022).

    Article  Google Scholar 

  72. Previdi, M., Smith, K. L. & Polvani, L. M. Arctic amplification of climate change: a review of underlying mechanisms. Environ. Res. Lett. 16, 093003 (2021).

    Article  CAS  Google Scholar 

  73. Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    Article  Google Scholar 

  74. Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

    Article  Google Scholar 

  75. Dai, A. & Song, M. Little influence of Arctic amplification on mid-latitude climate. Nat. Clim. Change 10, 231–237 (2020).

    Article  Google Scholar 

  76. Kim, Y., Kimball, J. S., Zhang, K. & McDonald, K. C. Satellite detection of increasing northern hemisphere non-frozen seasons from 1979 to 2008: implications for regional vegetation growth. Remote. Sens. Environ. 121, 472–487 (2012).

    Article  Google Scholar 

  77. Chapin, F. S., Matson, P. A. & Mooney, H. A. Principles of Terrestrial Ecosystem Ecology (Springer Verlag, 2002).

  78. Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    Article  Google Scholar 

  79. Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).

    Article  CAS  Google Scholar 

  80. Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2019).

    Article  Google Scholar 

  81. Zhu, Z. C. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  CAS  Google Scholar 

  82. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122 (2019).

    Article  Google Scholar 

  83. Mao, J. et al. Human-induced greening of the northern extratropical land surface. Nat. Clim. Change 6, 959–963 (2016).

    Article  Google Scholar 

  84. Chen, C., Riley, W. J., Prentice, I. C. & Keenan, T. F. CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc. Natl Acad. Sci. USA 119, e2115627119 (2022).

    Article  CAS  Google Scholar 

  85. Zhang, Y. et al. Future reversal of warming-enhanced vegetation productivity in the northern hemisphere. Nat. Clim. Change 12, 581–586 (2022).

    Article  Google Scholar 

  86. Arcus, V. L. et al. On the temperature dependence of enzyme-catalyzed rates. Biochemistry 55, 1681–1688 (2016).

    Article  CAS  Google Scholar 

  87. Robinson, J. et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year. Biogeochemistry 133, 101–112 (2017).

    Article  CAS  Google Scholar 

  88. Kwon, M. J. et al. Siberian 2020 heatwave increased spring CO2 uptake but not annual CO2 uptake. Environ. Res. Lett. 16, 124030 (2021).

    Article  CAS  Google Scholar 

  89. Zona, D. et al. Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems. Sci. Rep. 12, 3986 (2022).

    Article  CAS  Google Scholar 

  90. Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. N. Phytol. 229, 2413–2445 (2021).

    Article  CAS  Google Scholar 

  91. He, Y. et al. CO2 fertilization contributed more than half of the observed forest biomass increase in northern extra-tropical land. Glob. Change Biol. 29, 4313–4326 (2023).

    Article  CAS  Google Scholar 

  92. Lombardozzi, D. L. et al. Simulating agriculture in the Community Land Model version 5. J. Geophys. Res. Biogeosci. 125, e2019JG005529 (2020).

    Article  Google Scholar 

  93. LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    Article  Google Scholar 

  94. Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).

    Article  CAS  Google Scholar 

  95. Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).

    Article  CAS  Google Scholar 

  96. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article  Google Scholar 

  97. Balting, D. F., AghaKouchak, A., Lohmann, G. & Ionita, M. Northern hemisphere drought risk in a warming climate. npj Clim. Atmos. Sci. 4, 61 (2021).

    Article  Google Scholar 

  98. Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Article  CAS  Google Scholar 

  99. Pastick, N. J. et al. Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Glob. Chang. Biol. 25, 1171–1189 (2019).

    Article  Google Scholar 

  100. Webb, E. E. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Clim. Change 12, 841–846 (2022).

    Article  CAS  Google Scholar 

  101. Zona, D. et al. Pan-Arctic soil moisture control on tundra carbon sequestration and plant productivity. Glob. Change Biol. 29, 1267–1281 (2023).

    Article  CAS  Google Scholar 

  102. Buermann, W. et al. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys. Res. Lett. 41, 2014GL059450 (2014).

    Article  Google Scholar 

  103. Yi, Y., Kimball, J. S. & Reichle, R. H. Spring hydrology determines summer net carbon uptake in northern ecosystems. Environ. Res. Lett. 9, 064003 (2014).

    Article  Google Scholar 

  104. Liu, Q. et al. Drought-induced increase in tree mortality and corresponding decrease in the carbon sink capacity of Canada’s boreal forests from 1970 to 2020. Glob. Change Biol. 29, 2274–2285 (2023).

    Article  CAS  Google Scholar 

  105. Bhatt, U. S. et al. Implications of Arctic sea ice decline for the earth system. Annu. Rev. Environ. Resour. 39, 57–89 (2014).

    Article  Google Scholar 

  106. Forchhammer, M. Sea-ice induced growth decline in Arctic shrubs. Biol. Lett. 13, 20170122 (2017).

    Article  Google Scholar 

  107. Bhatt, U. S. et al. Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote. Sens. 5, 4229–4254 (2013).

    Article  Google Scholar 

  108. Dutrieux, L., Bartholomeus, H., Herold, M. & Verbesselt, J. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11). Environ. Res. Lett. 7, 044028 (2012).

    Article  Google Scholar 

  109. Wang, J. A., Baccini, A., Farina, M., Randerson, J. T. & Friedl, M. A. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nat. Clim. Change 11, https://doi.org/10.1038/s41558-021-01027-4 (2021).

  110. Wang, J. A. et al. Extensive land cover change across Arctic-boreal northwestern North America from disturbance and climate forcing. Glob. Change Biol. 26, 807–822 (2020).

    Article  Google Scholar 

  111. Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).

    Article  Google Scholar 

  112. Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020).

    Article  Google Scholar 

  113. Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

    Article  Google Scholar 

  114. Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    Article  CAS  Google Scholar 

  115. Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).

    Article  Google Scholar 

  116. Holmgren, M. et al. Positive shrub–tree interactions facilitate woody encroachment in boreal peatlands. J. Ecol. 103, 58–66 (2015).

    Article  Google Scholar 

  117. Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    Article  CAS  Google Scholar 

  118. Mekonnen, Z. A. et al. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 16, 053001 (2021).

    Article  CAS  Google Scholar 

  119. Rotbarth, R. et al. Northern expansion is not compensating for southern declines in North American boreal forests. Nat. Commun. 14, 3373 (2023).

    Article  CAS  Google Scholar 

  120. Dial, R. J., Maher, C. T., Hewitt, R. E. & Sullivan, P. F. Sufficient conditions for rapid range expansion of a boreal conifer. Nature 608, 546–551 (2022).

    Article  CAS  Google Scholar 

  121. D’Orangeville, L. et al. Northeastern North America as a potential refugium for boreal forests in a warming climate. Science 352, 1452–1455 (2016).

    Article  Google Scholar 

  122. D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).

    Article  Google Scholar 

  123. Van Der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article  Google Scholar 

  124. Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Article  CAS  Google Scholar 

  125. Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).

    Article  CAS  Google Scholar 

  126. Zheng, B. et al. Record-high CO2 emissions from boreal fires in 2021. Science 379, 912–917 (2023).

    Article  CAS  Google Scholar 

  127. Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article  Google Scholar 

  128. Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Article  CAS  Google Scholar 

  129. Scholten, R. C., Coumou, D., Luo, F. & Veraverbeke, S. Early snowmelt and polar jet dynamics co-influence recent extreme Siberian fire seasons. Science 378, 1005–1009 (2022).

    Article  CAS  Google Scholar 

  130. Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).

    Article  Google Scholar 

  131. Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).

    Article  Google Scholar 

  132. Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).

    Article  Google Scholar 

  133. McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Article  CAS  Google Scholar 

  134. Welp, L. R., Randerson, J. T. & Liu, H. P. Seasonal exchange of CO2 and δ18O-CO2 varies with postfire succession in boreal forest ecosystems. J. Geophys. Res. Biogeosci. 111, https://doi.org/10.1029/2005jg000126 (2006).

  135. Parazoo, N. C. et al. Spring photosynthetic onset and net CO2 uptake in Alaska triggered by landscape thawing. Glob. Chang. Biol. 24, 3416–3435 (2018).

    Article  Google Scholar 

  136. Kim, J. E., Wang, J. A., Li, Y., Czimczik, C. I. & Randerson, J. T. Wildfire-induced increases in photosynthesis in boreal forest ecosystems of North America. Glob. Change Biol. 30, e17151 (2024).

    Article  CAS  Google Scholar 

  137. Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).

    Article  Google Scholar 

  138. Coursolle, C. et al. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agric. For. Meteorol. 165, 136–148 (2012).

    Article  Google Scholar 

  139. Goulden, M. L. et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Change Biol. 17, 855–871 (2011).

    Article  Google Scholar 

  140. Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  CAS  Google Scholar 

  141. Schuur, E. A. et al. Permafrost and climate change: carbon cycle feedbacks from the warming Arctic. Annu. Rev. Environ. Resour. 47, 343–371 (2022).

    Article  Google Scholar 

  142. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article  CAS  Google Scholar 

  143. Plaza, C. et al. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat. Geosci. 12, 627–631 (2019).

    Article  CAS  Google Scholar 

  144. Mauritz, M. et al. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. Glob. Chang. Biol. 23, 3646–3666 (2017).

    Article  Google Scholar 

  145. Schadel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).

    Article  CAS  Google Scholar 

  146. Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).

    Article  CAS  Google Scholar 

  147. Ogden, E. L., Cumming, S. G., Smith, S. L., Turetsky, M. R. & Baltzer, J. L. Permafrost thaw induces short-term increase in vegetation productivity in northwestern Canada. Glob. Chang. Biol. 29, 5352–5366 (2023).

    Article  CAS  Google Scholar 

  148. Walvoord, M. A. & Striegl, R. G. Complex vulnerabilities of the water and aquatic carbon cycles to permafrost thaw. Front. Clim. 3, 730402 (2021).

    Article  Google Scholar 

  149. Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).

    Article  CAS  Google Scholar 

  150. Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3, 68–84 (2022).

    Article  Google Scholar 

  151. Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).

    Article  Google Scholar 

  152. Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).

    Article  Google Scholar 

  153. Flanner, M. G., Shell, K. M., Barlage, M., Perovich, D. K. & Tschudi, M. Radiative forcing and albedo feedback from the northern hemisphere cryosphere between 1979 and 2008. Nat. Geosci. 4, 151–155 (2011).

    Article  CAS  Google Scholar 

  154. Parmentier, F.-J. W. et al. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere. Ambio 46, 53–69 (2017).

    Article  CAS  Google Scholar 

  155. Parmentier, F. et al. Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. J. Geophys. Res. Biogeosci. 116, G04013 (2011).

    Article  Google Scholar 

  156. Haei, M., Öquist, M. G., Kreyling, J., Ilstedt, U. & Laudon, H. Winter climate controls soil carbon dynamics during summer in boreal forests. Environ. Res. Lett. 8, 024017 (2013).

    Article  CAS  Google Scholar 

  157. Pulliainen, J. et al. Early snowmelt significantly enhances boreal springtime carbon uptake. Proc. Natl Acad. Sci. USA 114, 11081–11086 (2017).

    Article  CAS  Google Scholar 

  158. Yi, Y., Kimball, J. S., Rawlins, M. A., Moghaddam, M. & Euskirchen, E. S. The role of snow cover affecting boreal-Arctic soil freeze–thaw and carbon dynamics. Biogeosciences 12, 5811–5829 (2015).

    Article  Google Scholar 

  159. Kreyling, J., Haei, M. & Laudon, H. Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests. Oecologia 168, 577–587 (2012).

    Article  Google Scholar 

  160. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  CAS  Google Scholar 

  161. Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  Google Scholar 

  162. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

    Article  Google Scholar 

  163. Holmes, R. M. et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries Coasts 35, 369–382 (2012).

    Article  CAS  Google Scholar 

  164. Raymond, P. A. et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Glob. Biogeochem. Cycles 21, https://doi.org/10.1029/2007GB002934 (2007).

  165. Feng, D. et al. Recent changes to Arctic river discharge. Nat. Commun. 12, 6917 (2021).

    Article  CAS  Google Scholar 

  166. Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A. & Wickland, K. P. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 32, https://doi.org/10.1029/2005GL024413 (2005).

  167. Liu, S. et al. The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proc. Natl Acad. Sci. USA 119, e2106322119 (2022).

    Article  CAS  Google Scholar 

  168. Virkkala, A.-M. et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal ___domain: regional patterns and uncertainties. Glob. Change Biol. 27, 4040–4059 (2021).

    Article  CAS  Google Scholar 

  169. Watts, J. D. et al. Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget. Glob. Change Biol. 29, 1870–1889 (2023).

    Article  CAS  Google Scholar 

  170. McGuire, A. D. et al. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Glob. Biogeochem. Cycles 30, 1015–1037 (2016).

    Article  CAS  Google Scholar 

  171. Kwon, M. J. et al. Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosciences 13, 4219–4235 (2016).

    Article  CAS  Google Scholar 

  172. Goetz, S. et al. An overview of NASA’s Arctic Boreal Vulnerability Experiment (ABoVE): development, implementation, advances and knowledge gaps. Environ. Res. Lett. 14 (2022).

  173. Miller, C. et al. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environ. Res. Lett. 14, 080201 (2019).

    Article  Google Scholar 

  174. Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).

    Article  CAS  Google Scholar 

  175. Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article  Google Scholar 

  176. Birch, L. et al. Addressing biases in Arctic–boreal carbon cycling in the Community Land Model Version 5. Geosci. Model. Dev. 14, 3361–3382 (2021).

    Article  CAS  Google Scholar 

  177. Masarie, K., Peters, W., Jacobson, A. & Tans, P. ObsPack: a framework for the preparation, delivery, and attribution of atmospheric greenhouse gas measurements. Earth Syst. Sci. Data 6, 375–384 (2014).

    Article  Google Scholar 

  178. Chevallier, F. et al. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos. Chem. Phys. 19, 14233–14251 (2019).

    Article  CAS  Google Scholar 

  179. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  180. Liptak, J., Keppel-Aleks, G. & Lindsay, K. Drivers of multi-century trends in the atmospheric CO2 mean annual cycle in a prognostic ESM. Biogeosciences 14, 1383–1401 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CAS Youth Interdisciplinary Team, CAS Project for Young Scientists in Basic Research (YSBR-037), and Major Program of the Institute of Applied Ecology, Chinese Academy of Sciences (IAEMP202201). B.M.R., J.S.K., J.D. and L.H. were supported by the NASA Arctic-Boreal Vulnerability Experiment and Carbon Cycle Science programs (NNX17AE13G, 80NSSC22K1238, 80NSSC19M0105). B.M.R., S.M.N., A.-M.V. and J.D.W. were also supported by the Gordon and Betty Moore Foundation (grant no. 8414), and funding catalysed through the Audacious Project (Permafrost Pathways). G.K.-A. acknowledges funding from the RUBISCO Science Focus Area, which is funded by the Department of Energy Regional and Global Model and Analysis program. M.H. acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program (RGPIN-02565-21). J.A.W. and J.E.K. thank the NASA Arctic-Boreal Vulnerability Experiment program (80NSSC23K0140). A.P.B. was supported by the NASA ResCom award (20-CARBON20-0096). W.W. was supported by the National Natural Science Foundation of China (42371075). E.A.S. received support from: NSF ARCSS RNA grant no. 1931333, and the Minderoo Foundation. S.J.G. and L.T.B. were supported by the NASA Arctic-Boreal Vulnerability Experiment (80NSSC22K1247). W.B. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – BU 3955/2-1. J.E.K received support from the National Science Foundation Graduate Research Fellowship under grant no. DGE-1839285. A.L.B. was funded by the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) grants NNX17AE44G and 80NSSC19M01, and the Department of Defense Strategic Environmental Research and Development Program (SERDP) contract RC18-1183. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

Author information

Authors and Affiliations

Authors

Contributions

B.M.R. and Z.L. conceptualized the work. Z.L. led the work. Z.L., B.M.R., G.K.-A., Y.Z. and M.H. organized the work and contributed analysis. Z.L., B.M.R., G.K.-A., M.H., A.P.B., Y.Z. and J.S.K. wrote the original manuscript. All authors contributed to the discussion and writing of this manuscript.

Corresponding author

Correspondence to Yangjian Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks three anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Rogers, B.M., Keppel-Aleks, G. et al. Seasonal CO2 amplitude in northern high latitudes. Nat Rev Earth Environ 5, 802–817 (2024). https://doi.org/10.1038/s43017-024-00600-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00600-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing