Abstract
The Tibetan and Iranian plateaus are the two most prominent orogenic plateaus on the present Earth built by continental collision. However, the timings of initial collision and suturing in the Himalaya and Zagros remain debated. In this Review, we summarize the timings, similarities and differences between the India–Eurasia collision and the Arabia–Eurasia collision, by comparing their sedimentary, magmatic, metamorphic, structural and palaeomagnetic records. The India–Eurasia collision is tightly constrained to have initiated in the central Himalaya at 65–59 Ma, possibly progressing towards the western and eastern Himalayas by 55–50 Ma. By contrast, the initial collision in the Zagros is loosely constrained to ~34 Ma, with a possibility of diachronous collision, younging to the southeast. Similarities between the two collisions include pre-collisional accretionary tectonism and magmatism, syn-collisional deformation and sedimentation, and crustal thickening. Apparent differences in lithospheric dynamics, deformation styles and metamorphism are attributed to variations in convergence rates, durations and magnitudes. Future research should focus on data-driven modelling and geophysical imaging beneath the Tibetan and Iranian plateaus to further quantify the geodynamic processes and driving forces contributing to continuous plate convergence, plateau formation and their surface impacts.
Key points
-
The tectono-sedimentary response in the earliest foreland basin provides the most direct evidence in determining the timing of initial collision, with the temporal and spatial evolution reflecting the suturing process.
-
The evolution of foreland basin systems and continuous sedimentary records strongly supports a single-stage India–Eurasia collision over a dual-stage scenario.
-
The India–Eurasia initial collision began in the central Himalaya at 65–59 Ma, whereas the Arabia–Eurasia collision most probably initiated at 34 Ma.
-
The duration and rates of post-collisional convergence (50–60 mm yr−1 since 50 Ma versus 25–30 mm yr−1 since 25 Ma) determine the extent of Indian and Arabian penetration into Eurasia (1,000–2,000 km versus 150 km), leading to variations in deep dynamics, plateau growth and deformation kinematics.
-
The Iranian Plateau preserves its subduction-dominated structure, whereas the Tibetan Plateau evolved through complex deep processes, including subduction, delamination and break-off, transforming from orogenic belts into a united plateau.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Molnar, P., Boos, W. R. & Battisti, D. S. Orographic controls on climate and paleoclimate of asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 38, 77–102 (2010).
Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).
Richards, J. P. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geol. Rev. 70, 323–345 (2015).
Hou, Z. et al. Lithospheric architecture of the lhasa terrane and its control on ore deposits in the Himalayan–Tibetan orogen. Econ. Geol. 110, 1541–1575 (2015).
Bilham, R., Gaur, V. K. & Molnar, P. Himalayan seismic hazard. Science 293, 1442–1444 (2001).
Dal Zilio, L., Hetényi, G., Hubbard, J. & Bollinger, L. Building the Himalaya from tectonic to earthquake scales. Nat. Rev. Earth Environ. 2, 251–268 (2021).
Elliott, J. R. et al. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat. Geosci. 9, 174–180 (2016).
Dewey, J. F., Shackelton, R. M., Chang, C. F. & Sun, Y. Y. The tectonic evolution of the Tibetan Plateau. Philos. Trans. R. Soc. Lond. 327, 379–413 (1988).
Zhu, R., Zhao, P. & Zhao, L. Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Sci. China Earth Sci. 65, 1–24 (2021).
Sengör, A. M. C. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature 279, 590–593 (1979).
Stampfli, G. M. & Borel, G. D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 196, 17–33 (2002).
Allègre, C. J. et al. Structure and evolution of the Himalaya–Tibet orogenic belt. Nature 307, 17–22 (1984).
Berberian, M. & King, G. C. P. Towards a paleogeography and tectonic evolution of Iran. Can. J. Earth Sci. 18, 210–265 (1981).
Ding, L. et al. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 652–667 (2022).
Kapp, P. & DeCelles, P. G. Mesozoic–Cenozoic geological evolution of the Himalayan–Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159–254 (2019).
Parsons, A. J., Hosseini, K., Palin, R. M. & Sigloch, K. Geological, geophysical and plate kinematic constraints for models of the India–Asia collision and the post-Triassic central Tethys oceans. Earth-Sci. Rev. 208, 103084 (2020).
Hatzfeld, D. & Molnar, P. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev. Geophys. 48, RG2005 (2010).
Sarr, A.-C. et al. Neogene South Asian monsoon rainfall and wind histories diverged due to topographic effects. Nat. Geosci. 15, 314–319 (2022).
Huang, J. et al. Global climate impacts of land–surface and atmospheric processes over the Tibetan Plateau. Rev. Geophys. 61, e2022RG000771 (2023).
Madanipour, S. et al. Synchronous deformation on orogenic plateau margins: insights from the Arabia–Eurasia collision. Tectonophysics 608, 440–451 (2013).
Ding, L., Kapp, P. & Wan, X. Paleocene–Eocene record of ophiolite obduction and initial India–Asia collision, south central Tibet. Tectonics 24, TC3001 (2005).
Allen, M. B., Saville, C., Blanc, E. J. P., Talebian, M. & Nissen, E. Orogenic plateau growth: expansion of the Turkish–Iranian Plateau across the Zagros fold‐and‐thrust belt. Tectonics 32, 171–190 (2013).
Mouthereau, F., Lacombe, O. & Vergés, J. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532-535, 27–60 (2012).
Hu, X. et al. The timing of India-Asia collision onset — facts, theories, controversies. Earth-Sci. Rev. 160, 264–299 (2016).
Najman, Y. The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Sci. Rev. 74, 1–72 (2006).
Ding, L. et al. Processes of initial collision and suturing between India and Asia. Sci. China Earth Sci. 60, 635–651 (2017).
Najman, Y. et al. Timing of India–Asia collision: geological, biostratigraphic, and palaeomagnetic constraints. J. Geophys. Res. 115, B12416 (2010).
Allen, M. B. & Armstrong, H. A. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Paleogeogr. Paleoclimatol. Paleoecol. 265, 52–58 (2008).
Zhang, Z. et al. Detrital zircon provenance analysis in the Zagros orogen, SW Iran: implications for the amalgamation history of the Neo-Tethys. Int. J. Earth Sci. 106, 1223–1238 (2017).
Alavi, M. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–238 (1994).
Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int. J. Earth Sci. 94, 401–419 (2005).
Najman, Y. et al. The Tethyan Himalayan detrital record shows that India–Asia terminal collision occurred by 54 Ma in the Western Himalaya. Earth Planet. Sci. Lett. 459, 301–310 (2017).
van Hinsbergen, D. J. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).
Searle, M. P. et al. The closing of Tethys and the tectonics of the Himalaya. GSA Bull. 98, 678–701 (1987).
Rowley, D. B. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet. Sci. Lett. 145, 1–13 (1996).
DeCelles, P. G. et al. Detrital geochronology and geochemistry of Cretaceous–Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett. 227, 313–330 (2004).
Ingalls, M., Rowley, D. B., Currie, B. & Colman, A. S. Large-scale subduction of continental crust implied by India–Asia mass-balance calculation. Nat. Geosci. 9, 848–853 (2016).
Yuan, J. et al. Triple-stage India–Asia collision involving arc-continent collision and subsequent two-stage continent-continent collision. Glob. Planet. Change 212, 103821 (2022).
McQuarrie, N. & van Hinsbergen, D. J. J. Retrodeforming the Arabia–Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41, 315–318 (2013).
Sun, G. et al. Pre-Eocene Arabia–Eurasia collision: new constraints from the Zagros Mountains (Amiran Basin, Iran). Geology 51, 941–946 (2023).
Aitchison, J. C. et al. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung–Zangbo suture (southern Tibet). Earth Planet. Sci. Lett. 183, 231–244 (2000).
Allen, M., Jackson, J. & Walker, R. Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short‐term and long‐term deformation rates. Tectonics 23, TC2008 (2004).
McQuarrie, N., Stock, J. M., Verdel, C. & Wernicke, B. P. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett. 30, 2036 (2003).
van Hinsbergen, D. J. J. Indian plate paleogeography, subduction and horizontal underthrusting below Tibet: paradoxes, controversies and opportunities. Natl Sci. Rev. 9, nwac074 (2022).
Jaeger, J.-J., Courtillot, V. & Tapponnier, P. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India–Asia collision. Geology 17, 316–319 (1989).
Beck, R. A. et al. Stratigraphic evidence for an early collision between northwest India and Asia. Nature 373, 55–58 (1995).
DeCelles, P. G., Kapp, P., Gehrels, G. E. & Ding, L. Paleocene–Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India–Asia collision. Tectonics 33, 824–849 (2014).
Hu, X., Garzanti, E., Moore, T. & Raffi, I. Direct stratigraphic dating of India–Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 43, 859–862 (2015).
Garzanti, E. The Himalayan foreland basin from collision onset to the present: a sedimentary–petrology perspective. Geol. Soc. Spec. Publ. 483, SP483.417 (2019).
DeCelles, P. G. & Giles, K. A. Foreland basin systems. Basin Res. 8, 105–123 (1996).
Garzanti, E., Baud, A. & Mascle, G. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta 1, 297–312 (1987).
Hu, X., Sinclair, H. D., Wang, J., Jiang, H. & Wu, F. Late Cretaceous–Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of India–Asia initial collision. Basin Res. 24, 520–543 (2012).
Zhang, Q., Willems, H., Ding, L., Gräfe, K.-U. & Appel, E. Initial India–Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: evidence from stratigraphy and paleontology. J. Geol. 120, 175–189 (2012).
Baral, U. et al. Detrital zircon U–Pb geochronology of a Cenozoic foreland basin in Northeast India: implications for zircon provenance during the collision of the Indian and Asian plates. Terra Nova 31, 18–27 (2018).
DeCelles, P. G., Gehrels, G. E., Quade, J. & Ojha, T. P. Eocene–Early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics 17, 741–765 (1998).
Burbank, D. W., Beck, R. A. & Mulder, T. in The Tectonic Evolution of Asia (eds A. Yin & T. M. Harrison) 149–190 (Cambridge Univ. Press, 1996).
Wu, F. Y. et al. Zircon U–Pb and Hf isotopic constraints on the onset time of India–Asia collision. Am. J. Sci. 314, 548–579 (2014).
An, W., Hu, X., Garzanti, E., Wang, J. G. & Liu, Q. New precise dating of the India–Asia collision in the Tibetan Himalaya at 61 Ma. Geophys. Res. Lett. 48, e2020GL090641 (2021).
Wang, T., Li, G. & Elmes, M. Biostratigraphy and provenance analysis of the Cretaceous to Palaeogene deposits in southern Tibet: implications for the India–Asia collision. Basin Res. 33, 1749–1775 (2021).
Wei, Z. et al. The embryonic Himalayan foreland basin revealed in the eastern Yarlung Zangbo suture zone, southeastern Tibet. Sediment. Geol. 407, 105743 (2020).
Guo, X. D. et al. Timing of India–Asia suturing: evidence from a remnant peripheral foreland basin in Xigaze, South Tibet. Paleogeogr. Paleoclimatol. Paleoecol. 638, 112043 (2024).
Cai, F., Ding, L. & Yue, Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: implications for timing of India–Asia collision. Earth Planet. Sci. Lett. 305, 195–206 (2011).
Zhu, B. et al. Age of Initiation of the India–Asia collision in the East–Central Himalaya. J. Geol. 113, 265–285 (2005).
Green, O. R., Searle, M. P., Corfield, R. I. & Corfield, R. M. Cretaceous–tertiary carbonate platform evolution and the age of the India–Asia Collision along the Ladakh Himalaya (Northwest India). J. Geol. 116, 331–353 (2008).
Feng, W. et al. Constraints on the timing of the India–Asia collision and unroofing history of the Himalayan orogen using detrital zircon U–Pb–Hf and whole‐rock Sr–Nd isotopes in Cretaceous–Miocene Lesser Himalayan sedimentary rocks. Basin Res. 35, 949–977 (2022).
Najman, Y., Carter, A., Oliver, G. & Garzanti, E. Provenance of Eocene foreland basin sediments, Nepal: constraints to the timing and diachroneity of early Himalayan orogenesis. Geology 33, 309–312 (2005).
Ding, L. et al. Detrital zircon U–Pb ages of tertiary sequences (Palaeocene–Miocene): inner fold belt and belt of Schuppen, Indo‐Myanmar ranges, India. Geol. J. 57, 5191–5206 (2022).
Najman, Y. et al. The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh. Earth Planet. Sci. Lett. 273, 1–14 (2008).
Najman, Y., Pringle, M., Godin, L. & Oliver, G. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature 410, 194–197 (2001).
Critelli, S. & Garzanti, E. Provenance of the lower tertiary murree redbeds (Hazara-Kashmir Syntaxis, Pakistan) and initial rising of the Himalayas. Sediment. Geol. 89, 265–284 (1994).
Ding, L. et al. The India–Asia collision in north Pakistan: insight from the U–Pb detrital zircon provenance of Cenozoic foreland basin. Earth Planet. Sci. Lett. 455, 49–61 (2016).
Colleps, C. L. et al. Sediment provenance of pre- and post-collisional Cretaceous–Paleogene strata from the frontal Himalaya of northwest India. Earth Planet. Sci. Lett. 534, 116079 (2020).
Najman, Y. & Garzanti, E. Reconstructing early Himalayan tectonic evolution and paleogeography from tertiary foreland basin sedimentary rocks, northern India. GSA Bull. 112, 435–449 (2000).
Zhuang, G. et al. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan. Earth Planet. Sci. Lett. 432, 363–373 (2015).
Guillot, S. et al. Reconstructing the total shortening history of the NW Himalaya. Geochem. Geophys. Geosyst. 4, 1064 (2003).
Yuan, J. et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India–Asia collision. Natl Sci. Rev. 8, nwaa173 (2021).
Ji, W., Wu, F., Liu, C. & Chung, S. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Sci. China Earth Sci. 52, 1240–1261 (2009).
Wang, C. et al. Petrogenesis of Middle–Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa Terrane: implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos 262, 320–333 (2016).
Bouilhol, P., Jagoutz, O., Hanchar, J. M. & Dudas, F. O. Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 366, 163–175 (2013).
Ding, L., Kapp, P., Zhong, D. & Deng, W. Cenozoic volcanism in tibet: evidence for a transition from oceanic to continental subduction. J. Petrol. 44, 1833–1865 (2003).
He, S., Kapp, P., DeCelles, P. G., Gehrels, G. E. & Heizler, M. Cretaceous–tertiary geology of the gangdese arc in the Linzhou area, southern Tibet. Tectonophysics 433, 15–37 (2007).
von Blanckenburg, F. & Davies, J. H. Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14, 120–131 (1995).
Zhu, D., Wang, Q. & Zhao, Z. Constraining quantitatively the timing and process of continent–continent collision using magmatic record: method and examples. Sci. China Earth Sci. 60, 1040–1056 (2017).
van Hunen, J. & Allen, M. B. Continental collision and slab break-off: a comparison of 3-D numerical models with observations. Earth Planet. Sci. Lett. 302, 27–37 (2011).
Yang, T. et al. Paleomagnetic results from the Early Cretaceous Lakang formation lavas: constraints on the paleolatitude of the Tethyan Himalaya and the India–Asia collision. Earth Planet. Sci. Lett. 428, 120–133 (2015).
Huang, W. et al. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks. Geochem. Geophys. Geosyst. 16, 77–100 (2015).
Chu, M.-F. et al. India’s hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth Planet. Sci. Lett. 307, 479–486 (2011).
Zhu, D.-C. et al. The Lhasa terrane: record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 301, 241–255 (2011).
Garzanti, E., Radeff, G. & Malusà, M. G. Slab breakoff: a critical appraisal of a geological theory as applied in space and time. Earth-Sci. Rev. 177, 303–319 (2018).
Ducea, M. N., Saleeby, J. B. & Bergantz, G. The architecture, chemistry, and evolution of continental magmatic arcs. Annu. Rev. Earth Planet. Sci. 43, 299–331 (2015).
Leech, M., Singh, S., Jain, A., Klemperer, S. & Manickavasagam, R. The onset of India–Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett. 234, 83–97 (2005).
Donaldson, D. G., Webb, A. A. G., Menold, C. A., Kylander-Clark, A. R. C. & Hacker, B. R. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology 41, 835–838 (2013).
O’Brien, P. J. Tso Morari coesite eclogite: pseudosection predictions v. the preserved record and implications for tectonometamorphic models. Geol. Soc. Spec. Publ. 474, 5–24 (2019).
Lanari, P. et al. Deciphering high-pressure metamorphism in collisional context using microprobe mapping methods: application to the Stak eclogitic massif (northwest Himalaya). Geology 41, 111–114 (2013).
Kohn, M. J. Himalayan metamorphism and its tectonic implications. Annu. Rev. Earth Planet. Sci. 42, 381–419 (2014).
Weller, O. M. et al. The metamorphic and magmatic record of collisional orogens. Nat. Rev. Earth Environ. 2, 781–799 (2021).
Ding, L., Zhong, D., Yin, A., Kapp, P. & Harrison, T. M. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet. Sci. Lett. 192, 423–438 (2001).
Zhang, Y. et al. Single‐stage synchronous India–Asia collision model revealed by Himalayan high‐pressure metamorphic rocks. Tectonics 43, e2024TC008253 (2024).
Laskowski, A. K., Kapp, P., Vervoort, J. D. & Ding, L. High-pressure Tethyan Himalaya rocks along the India–Asia suture zone in southern Tibet. Lithosphere 8, 574–582 (2016).
Smit, M. A., Hacker, B. R. & Lee, J. Tibetan garnet records Early Eocene initiation of thickening in the Himalaya. Geology 42, 591–594 (2014).
Ding, H. et al. Early Eocene (c. 50 Ma) collision of the Indian and Asian continents: constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth Planet. Sci. Lett. 435, 64–73 (2016).
Smit, M. A., Ratschbacher, L., Kooijman, E. & Stearns, M. A. Early evolution of the Pamir deep crust from Lu–Hf and U–Pb geochronology and garnet thermometry. Geology 42, 1047–1050 (2014).
Li, Y. P. et al. Was cratonic Asia deeply subducted beneath the Pamir? Evidence from P–T conditions and tectonic affinities of Cenozoic Pamir crustal xenoliths. J. Metamorph. Geol. 41, 925–965 (2023).
Anczkiewicz, R., Thirlwall, M., Alard, O., Rogers, N. W. & Clark, C. Diffusional homogenization of light REE in garnet from the Day Nui Con Voi Massif in N-Vietnam: implications for Sm–Nd geochronology and timing of metamorphism in the Red River shear zone. Chem. Geol. 318-319, 16–30 (2012).
Palin, R. M. et al. A geochronological and petrological study of anatectic paragneiss and associated granite dykes from the Day Nui Con Voi metamorphic core complex, North Vietnam: constraints on the timing of metamorphism within the Red River shear zone. J. Metamorph. Geol. 31, 359–387 (2013).
Liu, F., Wang, F., Liu, P. & Liu, C. Multiple metamorphic events revealed by zircons from the Diancang Shan−Ailao Shan metamorphic complex, southeastern Tibetan Plateau. Gondwana Res. 24, 429–450 (2013).
Corfield Richard, I., Searle Mike, P. & Green Owen, R. Photang thrust sheet: an accretionary complex structurally below the Spontang ophiolite constraining timing and tectonic environment of ophiolite obduction, Ladakh Himalaya, NW India. J. Geol. Soc. 156, 1031–1044 (1999).
Salam, H. et al. Kahi mélange complex in Kurram and Waziristan, NW Pakistan: an integrated approach for tectonic implications to India–Afghan suturing. Gondwana Res. 126, 79–95 (2024).
Aitchison, J. C. et al. Tectonic evolution of the western margin of the Burma microplate based on new fossil and radiometric age constraints. Tectonics 38, 1718–1741 (2019).
Wang, H.-Q. et al. Earliest Cretaceous accretion of Neo-Tethys oceanic subduction along the Yarlung Zangbo Suture Zone, Sanjgsang area, southern Tibet. Tectonophysics 744, 373–389 (2018).
Wang, H.-Q. et al. Early Tertiary deformation of the Zhongba–Gyangze thrust in central southern Tibet. Gondwana Res. 41, 235–248 (2017).
Zhao, Q., Yan, Y., Tonai, S., Dilek, Y. & Zhu, Z. Timing of India–Asia collision and significant coupling between them around 51 Ma: insights from the activation history of the Zhongba–Gyangze thrust in southern Tibet. Geology 52, 61–66 (2023).
Ratschbacher, L., Frisch, W., Liu, G. & Chen, C. Distributed deformation in southern and western Tibet during and after the India–Asia collision. J. Geophys. Res. 99, 19917–19945 (1994).
Zhang, J., Ji, J., Zhong, D., Ding, L. & He, S. Structural pattern of eastern Himalayan Syntaxis in Namjagbarwa and its formation process. Sci. China Earth Sci. 47, 138–150 (2004).
Xu, Z. et al. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: constraints from deformation, fabrics and geochronology. Gondwana Res. 21, 19–36 (2012).
Haproff, P. J., Odlum, M. L., Zuza, A. V., Yin, A. & Stockli, D. F. Structural and thermochronologic constraints on the cenozoic tectonic development of the Northern Indo‐Burma Ranges. Tectonics 39, e2020TC006231 (2020).
Tang, Y. et al. Diverse structural styles of the Northeastern Tethyan Himalaya in Southern Tibet reveal the early collisional tectonics of India and Asia. Tectonics 43, e2023TC007954 (2024).
Wiesmayr, G. & Grasemann, B. Eohimalayan fold and thrust belt: implications for the geodynamic evolution of the NW‐Himalaya (India). Tectonics 21, 1058 (2002).
DiPietro, J. A., Pullen, A. & Krol, M. A. Geologic history and thermal evolution in the hinterland region, western Himalaya, Pakistan. Earth-Sci. Rev. 223, 103817 (2021).
Smith, H. A., Chamberlain, C. P. & Zeitler, P. K. Timing and duration of himalayan metamorphism within the Indian Plate, Northwest Himalaya, Pakistan. J. Geol. 102, 493–508 (1994).
Li, Z. et al. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia. Geology 44, 727–730 (2016).
Ma, Y. et al. A stable southern margin of Asia during the cretaceous: paleomagnetic constraints on the Lhasa‐Qiangtang collision and the maximum width of the Neo‐Tethys. Tectonics 37, 3853–3876 (2018).
Lippert, P. C., van Hinsbergen, D. J. J. & Dupont-Nivet, G. Early cretaceous to present latitude of the central proto-Tibetan Plateau: a paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. Geol. Soc. Am. Spec. Pap. 507, 1–21 (2014).
Yi, Z., Wang, T., Meert, J. G., Zhao, Q. & Liu, Y. An initial collision of India and Asia in the equatorial humid belt. Geophys. Res. Lett. 48, e2021GL093408 (2021).
Huang, W. et al. What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou basin, Tibet). Tectonics 34, 594–622 (2015).
Ma, Y. et al. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: insights into the Neotethyan paleogeography and the India–Asia collision. Sci. Rep. 6, 21605 (2016).
Meng, J. et al. Strengthening the argument for a large Greater India. Proc. Natl Acad. Sci. USA 120, e2305928120 (2023).
Huang, W. et al. Continuity of the Sangdanlin Paleocene section and rejection of a large Greater India in the Early Cretaceous. Proc. Natl Acad. Sci. USA 121, e2402456121 (2024).
Bian, W. et al. Palaeomagnetism of the mid-Cretaceous red beds from the Tethyan Himalaya: direction discrepancy and tectonic implications. J. Geol. Soc. 180, jgs2023–jgs2029 (2023).
Patzelt, A., Li, H., Wang, J. & Appel, E. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics 259, 259–284 (1996).
Dupont-Nivet, G., Lippert, P. C., Van Hinsbergen, D. J. J., Meijers, M. J. M. & Kapp, P. Palaeolatitude and age of the Indo–Asia collision: palaeomagnetic constraints. Geophys. J. Int. 182, 1189–1198 (2010).
Yi, Z., Huang, B., Chen, J., Chen, L. & Wang, H. Paleomagnetism of Early Paleogene marine sediments in southern Tibet, China: implications to onset of the India–Asia collision and size of Greater India. Earth Planet. Sci. Lett. 309, 153–165 (2011).
Bian, W. et al. Paleomagnetic constraints on the India–Asia collision and the size of greater India. J. Geophys. Res. 126, e2021JB021965 (2021).
Yuan, J. et al. New paleomagnetic data from the central Tethyan Himalaya refine the size of Greater India during the Campanian. Earth Planet. Sci. Lett. 622, 118422 (2023).
Ali, J. R. & Aitchison, J. C. Greater India. Earth-Sci. Rev. 72, 169–188 (2005).
DeCelles, P. G., Carrapa, B., Gehrels, G. E., Chakraborty, T. & Ghosh, P. Along-strike continuity of structure, stratigraphy, and kinematic history in the Himalayan thrust belt: the view from Northeastern India. Tectonics 35, 2995–3027 (2016).
Meng, J. et al. India-Asia collision was at 24 degrees N and 50 Ma: palaeomagnetic proof from southernmost Asia. Sci. Rep. 2, 925 (2012).
Tong, Y. et al. Early paleocene paleomagnetic results from Southern Tibet, and tectonic implications. Int. Geol. Rev. 50, 546–562 (2008).
Appel, E., Crouzet, C. & Schill, E. Pyrrhotite remagnetizations in the Himalaya: a review. Geol. Soc. Spec. Publ. 371, 163–180 (2013).
Huang, W. et al. Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (southern Tibet) to date the India–Asia collision? J. Geophys. Res. 120, 42–66 (2015).
Dannemann, S. et al. Palaeomagnetic indication for India–Asia collision at 12° N and maximum 810 km Greater India extent in the western suture zone. Geophys. J. Int. 229, 1193–1211 (2022).
Ma, Y. et al. Paleomagnetism and U–Pb zircon geochronology of Lower Cretaceous lava flows from the western Lhasa terrane: new constraints on the India–Asia collision process and intracontinental deformation within Asia. J. Geophys. Res. 119, 7404–7424 (2014).
Dupont-Nivet, G., Lippert, P. C., Van Hinsbergen, D. J. J., Meijers, M. J. M. & Kapp, P. Palaeolatitude and age of the Indo-Asia collision: palaeomagnetic constraints. Geophys. J. Int. 182, 1189–1198 (2010).
Chen, J., Huang, B., Yi, Z., Yang, L. & Chen, L. Paleomagnetic and 40Ar/39Ar geochronological results from the Linzizong Group, Linzhou Basin, Lhasa Terrane, Tibet: implications to Paleogene paleolatitude and onset of the India–Asia collision. J. Asian Earth Sci. 96, 162–177 (2014).
Dupont-Nivet, G., van Hinsbergen, D. J. J. & Torsvik, T. H. Persistently low Asian paleolatitudes: implications for the India–Asia collision history. Tectonics 29, TC5016 (2010).
Hsü, K. J., Guitang, P. & Sengör, A. M. C. Tectonic evolution of the Tibetan plateau: a working hypothesis based on the archipelago model of orogenesis. Int. Geol. Rev. 37, 473–508 (1995).
Hu, X., Wang, J., An, W., Garzanti, E. & Li, J. Constraining the timing of the India–Asia continental collision by the sedimentary record. Sci. China Earth Sci. 60, 603–625 (2017).
Zhou, H. et al. India–Eurasia convergence speed-up by passive-margin sediment subduction. Nature 635, 114–120 (2024).
Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci. Rev. 114, 325–368 (2012).
Klaus, S., Morley, R. J., Plath, M., Zhang, Y. P. & Li, J. T. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun. 7, 12132 (2016).
Jagoutz, O., Royden, L., Holt, A. F. & Becker, T. W. Anomalously fast convergence of India and Eurasia caused by double subduction. Nat. Geosci. 8, 475–478 (2015).
Martin, C. R. et al. Paleocene latitude of the Kohistan–Ladakh arc indicates multistage India–Eurasia collision. Proc. Natl Acad. Sci. USA 117, 29487–29494 (2020).
Zhang, L.-L., Liu, C.-Z., Wu, F.-Y., Ji, W.-Q. & Wang, J.-G. Zedong terrane revisited: an intra-oceanic arc within Neo-Tethys or a part of the Asian active continental margin? J. Asian Earth Sci. 80, 34–55 (2014).
Davis, D., Suppe, J. & Dahlen, F. A. Mechanics of fold‐and‐thrust belts and accretionary wedges. J. Geophys. Res. 88, 1153–1172 (2012).
Zheng, T. et al. Direct structural evidence of Indian continental subduction beneath Myanmar. Nat. Commun. 11, 1944 (2020).
Zhang, Y. & Huang, B. The influence of Cretaceous paleolatitude variation of the Tethyan Himalaya on the India–Asia collision pattern. Sci. China Earth Sci. 60, 1057–1066 (2017).
Yi, Z. et al. A quasi-linear structure of the southern margin of Eurasia prior to the India–Asia collision: first paleomagnetic constraints from Upper Cretaceous volcanic rocks near the western syntaxis of Tibet. Tectonics 34, 1431–1451 (2015).
Wu, X., Hu, J., Chen, L., Liu, L. & Liu, L. Paleogene India–Eurasia collision constrained by observed plate rotation. Nat. Commun. 14, 7272 (2023).
Webb, A. A. Preliminary balanced palinspastic reconstruction of Cenozoic deformation across the Himachal Himalaya (northwestern India). Geosphere 9, 572–587 (2013).
Liu, L., Liu, L., Morgan, J. P., Xu, Y. G. & Chen, L. New constraints on Cenozoic subduction between India and Tibet. Nat. Commun. 14, 1963 (2023).
Li, Y. & Robinson, D. M. The India–Asia collision results from two possible pre-collisional crustal configurations of northern Greater India. Earth Planet. Sci. Lett. 610, 118098 (2023).
Gaetani, M. & Garzanti, E. Multicyclic history of the Northern India Continental Margin (Northwestern Himalaya)1. AAPG Bull. 75, 1427–1446 (1991).
Wang, C. et al. Formation and evolution of a magmatic system in the Indian passive margin: insights from the Triassic Yumai complex from the eastern Tethyan Himalaya. Geosphere 19, 1709–1728 (2023).
Bosworth, W., Stockli, D. F. & Polat, A. Early magmatism in the greater Red Sea rift: timing and significance. Can. J. Earth Sci. 53, 1158–1176 (2016).
Faccenna, C., Becker, T. W., Jolivet, L. & Keskin, M. Mantle convection in the Middle East: reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet. Sci. Lett. 375, 254–269 (2013).
van Hinsbergen, D. J. J. et al. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 81, 79–229 (2020).
Alavi, M. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am. J. Sci. 304, 1–20 (2004).
Fakhari, M. D., Axen, G. J., Horton, B. K., Hassanzadeh, J. & Amini, A. Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros. Tectonophysics 451, 170–185 (2008).
Horton, B. K. et al. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451, 97–122 (2008).
Agard, P. et al. Zagros orogeny: a subduction-dominated process. Geol. Mag. 148, 692–725 (2011).
Ballato, P. et al. Tectonic control on sedimentary facies pattern and sediment accumulation rates in the Miocene foreland basin of the southern Alborz mountains, northern Iran. Tectonics 27, TC6001 (2008).
Saura, E. et al. Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran–Iraq). Tectonics 34, 377–395 (2015).
Pirouz, M., Avouac, J.-P., Hassanzadeh, J., Kirschvink, J. L. & Bahroudi, A. Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening. Earth Planet. Sci. Lett. 477, 168–182 (2017).
Barber, D. E., Stockli, D. F., Horton, B. K. & Koshnaw, R. I. Cenozoic exhumation and foreland basin evolution of the zagros orogen during the Arabia–Eurasia collision, Western Iran. Tectonics 37, 4396–4420 (2018).
Koshnaw, R. I. et al. Neogene shortening and exhumation of the Zagros fold-thrust belt and foreland basin in the Kurdistan region of northern Iraq. Tectonophysics 694, 332–355 (2017).
Ballato, P. et al. Arabia–Eurasia continental collision: insights from Late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Geol. Soc. Am. Bull. 123, 106–131 (2011).
James, G. A. & Wynd, J. G. Stratigraphic nomenclature of Iranian oil consortium agreement area 1. AAPG Bull. 49, 2182–2245 (1965).
Homke, S. et al. Late cretaceous–paleocene formation of the proto-Zagros foreland basin, Lurestan province, SW Iran. GSA Bull. 121, 963–978 (2009).
Pirouz, M., Simpson, G. U. Y., Bahroudi, A. & Azhdari, A. L. I. Neogene sediments and modern depositional environments of the Zagros foreland basin system. Geol. Mag. 148, 838–853 (2011).
Homke, S. et al. Insights in the exhumation history of the NW Zagros from bedrock and detrital apatite fission‐track analysis: evidence for a long‐lived orogeny. Basin Res. 22, 659–680 (2010).
Madanipour, S. et al. The Arabia–Eurasia collision zone in Iran: tectonostratigraphic and structural synthesis. J. Pet. Geol. 47, 123–171 (2024).
Chiu, H.-Y. et al. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162-163, 70–87 (2013).
Moghadam, H. S. et al. Temporal changes in subduction- to collision-related magmatism in the Neotethyan orogen: the Southeast Iran example. Earth-Sci. Rev. 226, 103930 (2022).
Pirouz, M., Simpson, G., Castelltort, S., Gorin, G. & Bahroudi, A. Controls on the sequence stratigraphic architecture of the Neogene Zagros foreland basin. Geol. Soc. Am. Spec. Pap. 525, SPE525–512 (2017).
Perotti, C., Chiariotti, L., Bresciani, I., Cattaneo, L. & Toscani, G. Evolution and timing of salt diapirism in the Iranian sector of the Persian Gulf. Tectonophysics 679, 180–198 (2016).
Cai, F. et al. Configuration and timing of collision between Arabia and Eurasia in the zagros collision zone, fars, Southern Iran. Tectonics 40, e2021TC006762 (2021).
GholamiZadeh, P., Hu, X., Garzanti, E. & Adabi, M. H. Constraining the timing of Arabia–Eurasia collision in the Zagros orogen by sandstone provenance (Neyriz, Iran). GSA Bull. 134, 1793–1810 (2022).
Hessami, K., Koyi, H. A., Talbot, C. J., Tabasi, H. & Shabanian, E. Progressive unconformities within an evolving foreland fold-thrust belt, Zagros Mountains. J. Geol. Soc. 158, 969–981 (2001).
Koshnaw, R. I., Stockli, D. F. & Schlunegger, F. Timing of the Arabia–Eurasia continental collision — evidence from detrital zircon U–Pb geochronology of the Red Bed series strata of the northwest Zagros hinterland, Kurdistan region of Iraq. Geology 47, 47–50 (2018).
Koshnaw, R. I., Schlunegger, F. & Stockli, D. F. Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold-thrust belt, Kurdistan region of Iraq. Solid. Earth 12, 2479–2501 (2021).
Moghadam, H. S. et al. Neotethyan subduction ignited the Iran arc and backarc differently. J. Geophys. Res. 125, e2019JB018460 (2020).
Guest, B., Horton, B. K., Axen, G. J., Hassanzadeh, J. & McIntosh, W. C. Middle to late Cenozoic basin evolution in the western Alborz Mountains: implications for the onset of collisional deformation in northern Iran. Tectonics 26, TC6011 (2007).
Verdel, C., Wernicke, B. P., Hassanzadeh, J. & Guest, B. A Paleogene extensional arc flare‐up in Iran. Tectonics 30, TC3008 (2011).
Stern, R. J., Moghadam, H. S., Pirouz, M. & Mooney, W. The geodynamic evolution of Iran. Annu. Rev. Earth Planet. Sci. 49, 9–36 (2021).
Omrani, J. et al. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106, 380–398 (2008).
Aghazadeh, M., Castro, A., Badrzadeh, Z. & Vogt, K. Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran. Geol. Mag. 148, 980–1008 (2011).
Agard, P. et al. Transient, synobduction exhumation of Zagros blueschists inferred from P–T, deformation, time, and kinematic constraints: implications for Neotethyan wedge dynamics. J. Geophys. Res. 111, B11401 (2006).
Shakerardakani, F. et al. Metamorphic stages in mountain belts during a Wilson cycle: a case study in the central Sanandaj–Sirjan zone (Zagros Mountains, Iran). Geosci. Front. 13, 101272 (2022).
Davoudian, A. R., Genser, J., Neubauer, F. & Shabanian, N. 40 Ar/ 39 Ar mineral ages of eclogites from North Shahrekord in the Sanandaj–Sirjan Zone, Iran: implications for the tectonic evolution of Zagros orogen. Gondwana Res. 37, 216–240 (2016).
Ramezani, J. & Tucker, R. D. The saghand region, central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am. J. Sci. 303, 622–665 (2003).
Moghadam, H. S., Li, X.-H., Stern, R. J., Ghorbani, G. & Bakhshizad, F. Zircon U–Pb ages and Hf–O isotopic composition of migmatites from the Zanjan–Takab complex, NW Iran: constraints on partial melting of metasediments. Lithos 240–243, 34–48 (2016).
Berberian, M. Master ‘blind’ thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241, 193–224 (1995).
Robertson, A. H. F. & Parlak, O. Eocene contractional deformation in the NW corner of the Arabian plate and its relation to Arabia–Eurasia collision in SE Türkiye. Int. Geol. Rev. 67, 717–753 (2024).
Sarkarinejad, K., Faghih, A. & Grasemann, B. Transpressional deformations within the Sanandaj–Sirjan metamorphic belt (Zagros Mountains, Iran). J. Struct. Geol. 30, 818–826 (2008).
Homke, S., Verges, J., Garces, M., Emami, H. & Karpuz, R. Magnetostratigraphy of Miocene–Pliocene Zagros foreland deposits in the front of the Push-e Kush Arc (Lurestan Province, Iran). Earth Planet. Sci. Lett. 225, 397–410 (2004).
Madanipour, S., Ehlers, T. A., Yassaghi, A. & Enkelmann, E. Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U–Th/He thermochronometry: evidence for the Arabia–Eurasia collision in the NW Iranian Plateau. Tectonics 36, 1538–1561 (2017).
Zhang, Z. et al. From Tethyan subduction to Arabia–Eurasia continental collision: multiple geo-thermochronological signals from granitoids in NW Iran. Paleogeogr. Paleoclimatol. Paleoecol. 621, 111567 (2023).
Torsvik, T. H., Paulsen, T. S., Hughes, N. C., Myrow, P. M. & Ganeod, M. The Tethyan Himalaya: palaeogeographical and tectonic constraints from Ordovician palaeomagnetic data. J. Geol. Soc. 166, 679–687 (2009).
Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012).
van der Boon, A. et al. Quantifying Arabia–Eurasia convergence accommodated in the Greater Caucasus by paleomagnetic reconstruction. Earth Planet. Sci. Lett. 482, 454–469 (2018).
Song, P. et al. Paleomagnetism from central Iran reveals Arabia–Eurasia collision onset at the Eocene/Oligocene boundary. Geophys. Res. Lett. 50, e2023GL103858 (2023).
Mouthereau, F. et al. Tertiary sequence of deformation in a thin‐skinned/thick‐skinned collision belt: the Zagros folded bBelt (Fars, Iran). Tectonics 26, TC5006 (2007).
Gavillot, Y., Axen, G. J., Stockli, D. F., Horton, B. K. & Fakhari, M. D. Timing of thrust activity in the high Zagros fold-thrust belt, Iran, from (U–Th)/He thermochronometry. Tectonics 29, TC4025 (2010).
Guilmette, C. et al. Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nat. Geosci. 11, 688–695 (2018).
Darin, M. H. & Umhoefer, P. J. Diachronous initiation of Arabia–Eurasia collision from eastern Anatolia to the southeastern Zagros Mountains since middle Eocene time. Int. Geol. Rev. 64, 2653–2681 (2022).
Mouthereau, F. et al. Placing limits to shortening evolution in the Pyrenees: role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33, 2283–2314 (2014).
Bellahsen, N. et al. Collision kinematics in the western external Alps. Tectonics 33, 1055–1088 (2014).
Ding, L. et al. The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth Planet. Sci. Lett. 392, 250–264 (2014).
Ding, L. et al. Provenance and tectonic evolution of the foreland basin systems in the Gandese–Himalayan collisional orogen belt. Chin. J. Geol. 44, 1289–1311 (2009).
DeCelles, P. G. et al. Stratigraphy, structure, and tectonic evolution of the Himalayan fold‐thrust belt in western Nepal. Tectonics 20, 487–509 (2001).
Sun, J., Sha, J. & Wang, S. Stepwise closure of the Tethyan Seaway and its impact on the Earth’s multi-sphere interactions during the Cenozoic. Chin. Sci. Bull. 69, 184–199 (2024).
Farnsworth, A. et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, eaax1697 (2019).
Allen, M. B. et al. Contrasting styles of convergence in the Arabia–Eurasia collision: why escape tectonics does not occur in Iran. Geol. Soc. Am. Spec. Pap. 409, 579–589 (2006).
Shu, Y. et al. Illite K–Ar dating of the Leibo fault zone, southeastern margin of the Tibetan Plateau: implications for the quasi‐synchronous far‐field tectonic response to the India–Asia collision. Geophys. Res. Lett. 51, e2023GL108027 (2024).
Duvall, A. R., Clark, M. K., van der Pluijm, B. A. & Li, C. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth Planet. Sci. Lett. 304, 520–526 (2011).
Wu, C. et al. Late Mesozoic–Cenozoic cooling history of the northeastern Tibetan Plateau and its foreland derived from low-temperature thermochronology. GSA Bull. 133, 2393–2417 (2021).
Hollingsworth, J. et al. Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia–Eurasia convergence in NE Iran since the Oligocene. Geophys. J. Int. 181, 1214–1246 (2010).
Gao, Y., Chen, L., Yang, J. & Wang, K. Rheological heterogeneities control the non‐progressive uplift of the young Iranian Plateau. Geophys. Res. Lett. 50, e2022GL101829 (2023).
Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019).
Cande, S. C. & Stegman, D. R. Indian and African plate motions driven by the push force of the Réunion plume head. Nature 475, 47–52 (2011).
Cogné, J. P. & Humler, E. Trends and rhythms in global seafloor generation rate. Geochem. Geophys. Geosyst. 7, Q03011 (2006).
Patriat, P. & Achache, J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311, 615–621 (1984).
Behr, W. M. & Becker, T. W. Sediment control on subduction plate speeds. Earth Planet. Sci. Lett. 502, 166–173 (2018).
Duretz, T., Schmalholz, S. M. & Gerya, T. V. Dynamics of slab detachment. Geochem. Geophys. Geosyst. 13, Q03020 (2012).
van Hinsbergen, D. J., Steinberger, B., Doubrovine, P. V. & Gassmöller, R. Acceleration and deceleration of India–Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. 116, B06101 (2011).
Gürer, D., Granot, R. & van Hinsbergen, D. J. J. Plate tectonic chain reaction revealed by noise in the Cretaceous quiet zone. Nat. Geosci. 15, 233–239 (2022).
Li, Y. et al. Cenozoic India–Asia collision driven by mantle dragging the cratonic root. Nat. Commun. 15, 6674 (2024).
Johansen, S. E. et al. Deep electrical imaging of the ultraslow-spreading Mohns Ridge. Nature 567, 379–383 (2019).
Hatzfeld, D., Tatar, M., Priestley, K. & Ghafory-Ashtiany, M. Seismological constraints on the crustal structure beneath the Zagros Mountain belt (Iran). Geophys. J. Int. 155, 403–410 (2003).
Nábelek, J. et al. Underplating in the Himalaya–Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325, 1371–1374 (2009).
Kind, R. et al. Seismic images of crust and upper mantle beneath tibet: evidence for Eurasian plate subduction. Science 298, 1219–1221 (2002).
Murphy, M. A. & Yin, A. Structural evolution and sequence of thrusting in the Tethyan fold-thrust belt and Indus-Yalu suture zone, southwest Tibet. GSA Bull. 115, 21–34 (2003).
Kufner, S. K. et al. The Hindu Kush slab break-off as revealed by deep structure and crustal deformation. Nat. Commun. 12, 1685 (2021).
Zhao, J. et al. The boundary between the Indian and Asian tectonic plates below Tibet. Proc. Natl Acad. Sci. USA 107, 11229–11233 (2010).
Klemperer, S. L. et al. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision. Proc. Natl Acad. Sci. USA 119, e2113877119 (2022).
Wu, Z. et al. Lateral structural variation of the lithosphere‐asthenosphere system in the Northeastern to Eastern Iranian plateau and its tectonic implications. J. Geophys. Res. Solid Earth 126, e2020JB020256 (2021).
Agard, P., Searle, M. P., Alsop, G. I. & Dubacq, B. Crustal stacking and expulsion tectonics during continental subduction: P–T deformation constraints from Oman. Tectonics 29, TC5018 (2010).
Tapponnier, P. et al. Oblique stepwise rise and growth of the Tibet Plateau. Science 294, 1671–1677 (2001).
Hofmann, P. & Wagner, T. ITCZ controls on Late Cretaceous black shale sedimentation in the tropical Atlantic Ocean. Paleoceanography 26, PA4223 (2011).
Acknowledgements
The authors thank D.J.J. van Hinsbergen for insightful discussions. This work was supported by the National Natural Science Foundation of China (92355002), National Natural Science Foundation of China Excellent Research Group for Tibetan Plateau Earth System (continuation grant), the National Natural Science Foundation of China (42172240), and the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0708).
Author information
Authors and Affiliations
Contributions
L.D. conceived the idea and organized the writing process. L.D. and C.W. wrote the first draft of the manuscript and prepared the visualizations. All authors made substantial contributions to the discussion of the content and reviewed and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Shihu Li, Frédéric Mouthereau, Zhiyu Yi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Adakites
-
A specific type of intermediate to felsic volcanic rock that has distinct geochemical characteristics produced by partial melting of young oceanic crust or thickened crust.
- Eclogites
-
High-pressure metamorphic rocks characterized by distinctive mineral assemblages (such as garnet–omphacite). Eclogites form at pressures typically greater than 1.2 GPa, corresponding to depths of more than 40 km.
- Intertropical Convergence Zone
-
A zone of low atmospheric pressure that encircles the Earth near the thermal equator where the trade winds of the Northern and Southern Hemispheres converge.
- Orogenic belt
-
Tectonic expression of convergent margins and plate boundaries, usually characterized by folds, faults, metamorphic rocks and the formation of mountains.
- Prograde
-
Metamorphic processes characterized by increasing temperature and pressure conditions.
- Suture zone
-
Geological boundaries where two distinct tectonic terranes or plates collided and were welded together.
- Terrane
-
A distinct and identifiable fragment distinguished from adjacent domains by different geological features, including origin, lithology, stratigraphy and geological history.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, C., Ding, L., Xiong, Z. et al. Timing of initial collision and suturing processes in the Himalaya and Zagros. Nat Rev Earth Environ 6, 357–376 (2025). https://doi.org/10.1038/s43017-025-00669-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-025-00669-8