Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Timing of initial collision and suturing processes in the Himalaya and Zagros

Subjects

Abstract

The Tibetan and Iranian plateaus are the two most prominent orogenic plateaus on the present Earth built by continental collision. However, the timings of initial collision and suturing in the Himalaya and Zagros remain debated. In this Review, we summarize the timings, similarities and differences between the India–Eurasia collision and the Arabia–Eurasia collision, by comparing their sedimentary, magmatic, metamorphic, structural and palaeomagnetic records. The India–Eurasia collision is tightly constrained to have initiated in the central Himalaya at 65–59 Ma, possibly progressing towards the western and eastern Himalayas by 55–50 Ma. By contrast, the initial collision in the Zagros is loosely constrained to ~34 Ma, with a possibility of diachronous collision, younging to the southeast. Similarities between the two collisions include pre-collisional accretionary tectonism and magmatism, syn-collisional deformation and sedimentation, and crustal thickening. Apparent differences in lithospheric dynamics, deformation styles and metamorphism are attributed to variations in convergence rates, durations and magnitudes. Future research should focus on data-driven modelling and geophysical imaging beneath the Tibetan and Iranian plateaus to further quantify the geodynamic processes and driving forces contributing to continuous plate convergence, plateau formation and their surface impacts.

Key points

  • The tectono-sedimentary response in the earliest foreland basin provides the most direct evidence in determining the timing of initial collision, with the temporal and spatial evolution reflecting the suturing process.

  • The evolution of foreland basin systems and continuous sedimentary records strongly supports a single-stage India–Eurasia collision over a dual-stage scenario.

  • The India–Eurasia initial collision began in the central Himalaya at 65–59 Ma, whereas the Arabia–Eurasia collision most probably initiated at 34 Ma.

  • The duration and rates of post-collisional convergence (50–60 mm yr−1 since 50 Ma versus 25–30 mm yr−1 since 25 Ma) determine the extent of Indian and Arabian penetration into Eurasia (1,000–2,000 km versus 150 km), leading to variations in deep dynamics, plateau growth and deformation kinematics.

  • The Iranian Plateau preserves its subduction-dominated structure, whereas the Tibetan Plateau evolved through complex deep processes, including subduction, delamination and break-off, transforming from orogenic belts into a united plateau.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Tethys realm, suture zones and India–Arabia–Eurasia collision.
Fig. 2: Hypotheses of India–Arabia–Eurasia continental collision.
Fig. 3: Basin stratigraphy for the Zagros and Himalaya collision zones.
Fig. 4: Evolution of the Yarlung Tsangpo and Himalayan foreland basins.
Fig. 5: Evolution of the Zagros foreland basin system.
Fig. 6: Stepwise collisional processes in the Himalaya and Zagros.

Similar content being viewed by others

Data availability

Full data compilations are provided in Supplementary Tables 1 and 2.

References

  1. Molnar, P., Boos, W. R. & Battisti, D. S. Orographic controls on climate and paleoclimate of asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 38, 77–102 (2010).

    Article  CAS  Google Scholar 

  2. Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).

    Article  CAS  Google Scholar 

  3. Richards, J. P. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geol. Rev. 70, 323–345 (2015).

    Article  Google Scholar 

  4. Hou, Z. et al. Lithospheric architecture of the lhasa terrane and its control on ore deposits in the Himalayan–Tibetan orogen. Econ. Geol. 110, 1541–1575 (2015).

    Article  Google Scholar 

  5. Bilham, R., Gaur, V. K. & Molnar, P. Himalayan seismic hazard. Science 293, 1442–1444 (2001).

    Article  CAS  Google Scholar 

  6. Dal Zilio, L., Hetényi, G., Hubbard, J. & Bollinger, L. Building the Himalaya from tectonic to earthquake scales. Nat. Rev. Earth Environ. 2, 251–268 (2021).

    Article  Google Scholar 

  7. Elliott, J. R. et al. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat. Geosci. 9, 174–180 (2016).

    Article  CAS  Google Scholar 

  8. Dewey, J. F., Shackelton, R. M., Chang, C. F. & Sun, Y. Y. The tectonic evolution of the Tibetan Plateau. Philos. Trans. R. Soc. Lond. 327, 379–413 (1988).

    Article  Google Scholar 

  9. Zhu, R., Zhao, P. & Zhao, L. Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Sci. China Earth Sci. 65, 1–24 (2021).

    Article  Google Scholar 

  10. Sengör, A. M. C. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature 279, 590–593 (1979).

    Article  Google Scholar 

  11. Stampfli, G. M. & Borel, G. D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 196, 17–33 (2002).

    Article  CAS  Google Scholar 

  12. Allègre, C. J. et al. Structure and evolution of the Himalaya–Tibet orogenic belt. Nature 307, 17–22 (1984).

    Article  Google Scholar 

  13. Berberian, M. & King, G. C. P. Towards a paleogeography and tectonic evolution of Iran. Can. J. Earth Sci. 18, 210–265 (1981).

    Article  Google Scholar 

  14. Ding, L. et al. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 652–667 (2022).

    Article  Google Scholar 

  15. Kapp, P. & DeCelles, P. G. Mesozoic–Cenozoic geological evolution of the Himalayan–Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159–254 (2019).

    Article  Google Scholar 

  16. Parsons, A. J., Hosseini, K., Palin, R. M. & Sigloch, K. Geological, geophysical and plate kinematic constraints for models of the India–Asia collision and the post-Triassic central Tethys oceans. Earth-Sci. Rev. 208, 103084 (2020).

    Article  Google Scholar 

  17. Hatzfeld, D. & Molnar, P. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev. Geophys. 48, RG2005 (2010).

    Article  Google Scholar 

  18. Sarr, A.-C. et al. Neogene South Asian monsoon rainfall and wind histories diverged due to topographic effects. Nat. Geosci. 15, 314–319 (2022).

    Article  CAS  Google Scholar 

  19. Huang, J. et al. Global climate impacts of land–surface and atmospheric processes over the Tibetan Plateau. Rev. Geophys. 61, e2022RG000771 (2023).

    Article  Google Scholar 

  20. Madanipour, S. et al. Synchronous deformation on orogenic plateau margins: insights from the Arabia–Eurasia collision. Tectonophysics 608, 440–451 (2013).

    Article  Google Scholar 

  21. Ding, L., Kapp, P. & Wan, X. Paleocene–Eocene record of ophiolite obduction and initial India–Asia collision, south central Tibet. Tectonics 24, TC3001 (2005).

    Article  Google Scholar 

  22. Allen, M. B., Saville, C., Blanc, E. J. P., Talebian, M. & Nissen, E. Orogenic plateau growth: expansion of the Turkish–Iranian Plateau across the Zagros fold‐and‐thrust belt. Tectonics 32, 171–190 (2013).

    Article  Google Scholar 

  23. Mouthereau, F., Lacombe, O. & Vergés, J. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532-535, 27–60 (2012).

    Article  Google Scholar 

  24. Hu, X. et al. The timing of India-Asia collision onset — facts, theories, controversies. Earth-Sci. Rev. 160, 264–299 (2016).

    Article  Google Scholar 

  25. Najman, Y. The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Sci. Rev. 74, 1–72 (2006).

    Google Scholar 

  26. Ding, L. et al. Processes of initial collision and suturing between India and Asia. Sci. China Earth Sci. 60, 635–651 (2017).

    Article  CAS  Google Scholar 

  27. Najman, Y. et al. Timing of India–Asia collision: geological, biostratigraphic, and palaeomagnetic constraints. J. Geophys. Res. 115, B12416 (2010).

    Article  Google Scholar 

  28. Allen, M. B. & Armstrong, H. A. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Paleogeogr. Paleoclimatol. Paleoecol. 265, 52–58 (2008).

    Article  Google Scholar 

  29. Zhang, Z. et al. Detrital zircon provenance analysis in the Zagros orogen, SW Iran: implications for the amalgamation history of the Neo-Tethys. Int. J. Earth Sci. 106, 1223–1238 (2017).

    Article  CAS  Google Scholar 

  30. Alavi, M. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–238 (1994).

    Article  Google Scholar 

  31. Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int. J. Earth Sci. 94, 401–419 (2005).

    Article  CAS  Google Scholar 

  32. Najman, Y. et al. The Tethyan Himalayan detrital record shows that India–Asia terminal collision occurred by 54 Ma in the Western Himalaya. Earth Planet. Sci. Lett. 459, 301–310 (2017).

    Article  CAS  Google Scholar 

  33. van Hinsbergen, D. J. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).

    Article  Google Scholar 

  34. Searle, M. P. et al. The closing of Tethys and the tectonics of the Himalaya. GSA Bull. 98, 678–701 (1987).

    Article  Google Scholar 

  35. Rowley, D. B. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet. Sci. Lett. 145, 1–13 (1996).

    Article  CAS  Google Scholar 

  36. DeCelles, P. G. et al. Detrital geochronology and geochemistry of Cretaceous–Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett. 227, 313–330 (2004).

    Article  CAS  Google Scholar 

  37. Ingalls, M., Rowley, D. B., Currie, B. & Colman, A. S. Large-scale subduction of continental crust implied by India–Asia mass-balance calculation. Nat. Geosci. 9, 848–853 (2016).

    Article  CAS  Google Scholar 

  38. Yuan, J. et al. Triple-stage India–Asia collision involving arc-continent collision and subsequent two-stage continent-continent collision. Glob. Planet. Change 212, 103821 (2022).

    Article  Google Scholar 

  39. McQuarrie, N. & van Hinsbergen, D. J. J. Retrodeforming the Arabia–Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41, 315–318 (2013).

    Article  Google Scholar 

  40. Sun, G. et al. Pre-Eocene Arabia–Eurasia collision: new constraints from the Zagros Mountains (Amiran Basin, Iran). Geology 51, 941–946 (2023).

    Article  CAS  Google Scholar 

  41. Aitchison, J. C. et al. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung–Zangbo suture (southern Tibet). Earth Planet. Sci. Lett. 183, 231–244 (2000).

    Article  CAS  Google Scholar 

  42. Allen, M., Jackson, J. & Walker, R. Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short‐term and long‐term deformation rates. Tectonics 23, TC2008 (2004).

    Google Scholar 

  43. McQuarrie, N., Stock, J. M., Verdel, C. & Wernicke, B. P. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett. 30, 2036 (2003).

    Article  Google Scholar 

  44. van Hinsbergen, D. J. J. Indian plate paleogeography, subduction and horizontal underthrusting below Tibet: paradoxes, controversies and opportunities. Natl Sci. Rev. 9, nwac074 (2022).

    Article  Google Scholar 

  45. Jaeger, J.-J., Courtillot, V. & Tapponnier, P. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India–Asia collision. Geology 17, 316–319 (1989).

    Article  Google Scholar 

  46. Beck, R. A. et al. Stratigraphic evidence for an early collision between northwest India and Asia. Nature 373, 55–58 (1995).

    Article  CAS  Google Scholar 

  47. DeCelles, P. G., Kapp, P., Gehrels, G. E. & Ding, L. Paleocene–Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India–Asia collision. Tectonics 33, 824–849 (2014).

    Article  Google Scholar 

  48. Hu, X., Garzanti, E., Moore, T. & Raffi, I. Direct stratigraphic dating of India–Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 43, 859–862 (2015).

    Article  Google Scholar 

  49. Garzanti, E. The Himalayan foreland basin from collision onset to the present: a sedimentary–petrology perspective. Geol. Soc. Spec. Publ. 483, SP483.417 (2019).

    Article  Google Scholar 

  50. DeCelles, P. G. & Giles, K. A. Foreland basin systems. Basin Res. 8, 105–123 (1996).

    Article  Google Scholar 

  51. Garzanti, E., Baud, A. & Mascle, G. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta 1, 297–312 (1987).

    Article  Google Scholar 

  52. Hu, X., Sinclair, H. D., Wang, J., Jiang, H. & Wu, F. Late Cretaceous–Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of India–Asia initial collision. Basin Res. 24, 520–543 (2012).

    Article  Google Scholar 

  53. Zhang, Q., Willems, H., Ding, L., Gräfe, K.-U. & Appel, E. Initial India–Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: evidence from stratigraphy and paleontology. J. Geol. 120, 175–189 (2012).

    Article  Google Scholar 

  54. Baral, U. et al. Detrital zircon U–Pb geochronology of a Cenozoic foreland basin in Northeast India: implications for zircon provenance during the collision of the Indian and Asian plates. Terra Nova 31, 18–27 (2018).

    Article  Google Scholar 

  55. DeCelles, P. G., Gehrels, G. E., Quade, J. & Ojha, T. P. Eocene–Early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics 17, 741–765 (1998).

    Article  Google Scholar 

  56. Burbank, D. W., Beck, R. A. & Mulder, T. in The Tectonic Evolution of Asia (eds A. Yin & T. M. Harrison) 149–190 (Cambridge Univ. Press, 1996).

  57. Wu, F. Y. et al. Zircon U–Pb and Hf isotopic constraints on the onset time of India–Asia collision. Am. J. Sci. 314, 548–579 (2014).

    Article  CAS  Google Scholar 

  58. An, W., Hu, X., Garzanti, E., Wang, J. G. & Liu, Q. New precise dating of the India–Asia collision in the Tibetan Himalaya at 61 Ma. Geophys. Res. Lett. 48, e2020GL090641 (2021).

    Article  CAS  Google Scholar 

  59. Wang, T., Li, G. & Elmes, M. Biostratigraphy and provenance analysis of the Cretaceous to Palaeogene deposits in southern Tibet: implications for the India–Asia collision. Basin Res. 33, 1749–1775 (2021).

    Article  Google Scholar 

  60. Wei, Z. et al. The embryonic Himalayan foreland basin revealed in the eastern Yarlung Zangbo suture zone, southeastern Tibet. Sediment. Geol. 407, 105743 (2020).

    Article  Google Scholar 

  61. Guo, X. D. et al. Timing of India–Asia suturing: evidence from a remnant peripheral foreland basin in Xigaze, South Tibet. Paleogeogr. Paleoclimatol. Paleoecol. 638, 112043 (2024).

    Article  Google Scholar 

  62. Cai, F., Ding, L. & Yue, Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: implications for timing of India–Asia collision. Earth Planet. Sci. Lett. 305, 195–206 (2011).

    Article  CAS  Google Scholar 

  63. Zhu, B. et al. Age of Initiation of the India–Asia collision in the East–Central Himalaya. J. Geol. 113, 265–285 (2005).

    Article  CAS  Google Scholar 

  64. Green, O. R., Searle, M. P., Corfield, R. I. & Corfield, R. M. Cretaceous–tertiary carbonate platform evolution and the age of the India–Asia Collision along the Ladakh Himalaya (Northwest India). J. Geol. 116, 331–353 (2008).

    Article  CAS  Google Scholar 

  65. Feng, W. et al. Constraints on the timing of the India–Asia collision and unroofing history of the Himalayan orogen using detrital zircon U–Pb–Hf and whole‐rock Sr–Nd isotopes in Cretaceous–Miocene Lesser Himalayan sedimentary rocks. Basin Res. 35, 949–977 (2022).

    Article  Google Scholar 

  66. Najman, Y., Carter, A., Oliver, G. & Garzanti, E. Provenance of Eocene foreland basin sediments, Nepal: constraints to the timing and diachroneity of early Himalayan orogenesis. Geology 33, 309–312 (2005).

    Article  Google Scholar 

  67. Ding, L. et al. Detrital zircon U–Pb ages of tertiary sequences (Palaeocene–Miocene): inner fold belt and belt of Schuppen, Indo‐Myanmar ranges, India. Geol. J. 57, 5191–5206 (2022).

    Article  Google Scholar 

  68. Najman, Y. et al. The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh. Earth Planet. Sci. Lett. 273, 1–14 (2008).

    Article  CAS  Google Scholar 

  69. Najman, Y., Pringle, M., Godin, L. & Oliver, G. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature 410, 194–197 (2001).

    Article  CAS  Google Scholar 

  70. Critelli, S. & Garzanti, E. Provenance of the lower tertiary murree redbeds (Hazara-Kashmir Syntaxis, Pakistan) and initial rising of the Himalayas. Sediment. Geol. 89, 265–284 (1994).

    Article  Google Scholar 

  71. Ding, L. et al. The India–Asia collision in north Pakistan: insight from the U–Pb detrital zircon provenance of Cenozoic foreland basin. Earth Planet. Sci. Lett. 455, 49–61 (2016).

    Article  CAS  Google Scholar 

  72. Colleps, C. L. et al. Sediment provenance of pre- and post-collisional Cretaceous–Paleogene strata from the frontal Himalaya of northwest India. Earth Planet. Sci. Lett. 534, 116079 (2020).

    Article  CAS  Google Scholar 

  73. Najman, Y. & Garzanti, E. Reconstructing early Himalayan tectonic evolution and paleogeography from tertiary foreland basin sedimentary rocks, northern India. GSA Bull. 112, 435–449 (2000).

    Article  CAS  Google Scholar 

  74. Zhuang, G. et al. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan. Earth Planet. Sci. Lett. 432, 363–373 (2015).

    Article  CAS  Google Scholar 

  75. Guillot, S. et al. Reconstructing the total shortening history of the NW Himalaya. Geochem. Geophys. Geosyst. 4, 1064 (2003).

    Article  Google Scholar 

  76. Yuan, J. et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India–Asia collision. Natl Sci. Rev. 8, nwaa173 (2021).

    Google Scholar 

  77. Ji, W., Wu, F., Liu, C. & Chung, S. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Sci. China Earth Sci. 52, 1240–1261 (2009).

    Article  CAS  Google Scholar 

  78. Wang, C. et al. Petrogenesis of Middle–Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa Terrane: implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos 262, 320–333 (2016).

    Article  CAS  Google Scholar 

  79. Bouilhol, P., Jagoutz, O., Hanchar, J. M. & Dudas, F. O. Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 366, 163–175 (2013).

    Article  CAS  Google Scholar 

  80. Ding, L., Kapp, P., Zhong, D. & Deng, W. Cenozoic volcanism in tibet: evidence for a transition from oceanic to continental subduction. J. Petrol. 44, 1833–1865 (2003).

    Article  CAS  Google Scholar 

  81. He, S., Kapp, P., DeCelles, P. G., Gehrels, G. E. & Heizler, M. Cretaceous–tertiary geology of the gangdese arc in the Linzhou area, southern Tibet. Tectonophysics 433, 15–37 (2007).

    Article  Google Scholar 

  82. von Blanckenburg, F. & Davies, J. H. Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14, 120–131 (1995).

    Article  Google Scholar 

  83. Zhu, D., Wang, Q. & Zhao, Z. Constraining quantitatively the timing and process of continent–continent collision using magmatic record: method and examples. Sci. China Earth Sci. 60, 1040–1056 (2017).

    Article  CAS  Google Scholar 

  84. van Hunen, J. & Allen, M. B. Continental collision and slab break-off: a comparison of 3-D numerical models with observations. Earth Planet. Sci. Lett. 302, 27–37 (2011).

    Article  Google Scholar 

  85. Yang, T. et al. Paleomagnetic results from the Early Cretaceous Lakang formation lavas: constraints on the paleolatitude of the Tethyan Himalaya and the India–Asia collision. Earth Planet. Sci. Lett. 428, 120–133 (2015).

    Article  CAS  Google Scholar 

  86. Huang, W. et al. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks. Geochem. Geophys. Geosyst. 16, 77–100 (2015).

    Article  Google Scholar 

  87. Chu, M.-F. et al. India’s hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth Planet. Sci. Lett. 307, 479–486 (2011).

    Article  CAS  Google Scholar 

  88. Zhu, D.-C. et al. The Lhasa terrane: record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 301, 241–255 (2011).

    Article  CAS  Google Scholar 

  89. Garzanti, E., Radeff, G. & Malusà, M. G. Slab breakoff: a critical appraisal of a geological theory as applied in space and time. Earth-Sci. Rev. 177, 303–319 (2018).

    Article  Google Scholar 

  90. Ducea, M. N., Saleeby, J. B. & Bergantz, G. The architecture, chemistry, and evolution of continental magmatic arcs. Annu. Rev. Earth Planet. Sci. 43, 299–331 (2015).

    Article  CAS  Google Scholar 

  91. Leech, M., Singh, S., Jain, A., Klemperer, S. & Manickavasagam, R. The onset of India–Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett. 234, 83–97 (2005).

    Article  CAS  Google Scholar 

  92. Donaldson, D. G., Webb, A. A. G., Menold, C. A., Kylander-Clark, A. R. C. & Hacker, B. R. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology 41, 835–838 (2013).

    Article  CAS  Google Scholar 

  93. O’Brien, P. J. Tso Morari coesite eclogite: pseudosection predictions v. the preserved record and implications for tectonometamorphic models. Geol. Soc. Spec. Publ. 474, 5–24 (2019).

    Article  Google Scholar 

  94. Lanari, P. et al. Deciphering high-pressure metamorphism in collisional context using microprobe mapping methods: application to the Stak eclogitic massif (northwest Himalaya). Geology 41, 111–114 (2013).

    Article  CAS  Google Scholar 

  95. Kohn, M. J. Himalayan metamorphism and its tectonic implications. Annu. Rev. Earth Planet. Sci. 42, 381–419 (2014).

    Article  CAS  Google Scholar 

  96. Weller, O. M. et al. The metamorphic and magmatic record of collisional orogens. Nat. Rev. Earth Environ. 2, 781–799 (2021).

    Article  Google Scholar 

  97. Ding, L., Zhong, D., Yin, A., Kapp, P. & Harrison, T. M. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet. Sci. Lett. 192, 423–438 (2001).

    Article  CAS  Google Scholar 

  98. Zhang, Y. et al. Single‐stage synchronous India–Asia collision model revealed by Himalayan high‐pressure metamorphic rocks. Tectonics 43, e2024TC008253 (2024).

    Article  Google Scholar 

  99. Laskowski, A. K., Kapp, P., Vervoort, J. D. & Ding, L. High-pressure Tethyan Himalaya rocks along the India–Asia suture zone in southern Tibet. Lithosphere 8, 574–582 (2016).

    Article  Google Scholar 

  100. Smit, M. A., Hacker, B. R. & Lee, J. Tibetan garnet records Early Eocene initiation of thickening in the Himalaya. Geology 42, 591–594 (2014).

    Article  Google Scholar 

  101. Ding, H. et al. Early Eocene (c. 50 Ma) collision of the Indian and Asian continents: constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth Planet. Sci. Lett. 435, 64–73 (2016).

    Article  CAS  Google Scholar 

  102. Smit, M. A., Ratschbacher, L., Kooijman, E. & Stearns, M. A. Early evolution of the Pamir deep crust from Lu–Hf and U–Pb geochronology and garnet thermometry. Geology 42, 1047–1050 (2014).

    Article  Google Scholar 

  103. Li, Y. P. et al. Was cratonic Asia deeply subducted beneath the Pamir? Evidence from P–T conditions and tectonic affinities of Cenozoic Pamir crustal xenoliths. J. Metamorph. Geol. 41, 925–965 (2023).

    Article  CAS  Google Scholar 

  104. Anczkiewicz, R., Thirlwall, M., Alard, O., Rogers, N. W. & Clark, C. Diffusional homogenization of light REE in garnet from the Day Nui Con Voi Massif in N-Vietnam: implications for Sm–Nd geochronology and timing of metamorphism in the Red River shear zone. Chem. Geol. 318-319, 16–30 (2012).

    Article  CAS  Google Scholar 

  105. Palin, R. M. et al. A geochronological and petrological study of anatectic paragneiss and associated granite dykes from the Day Nui Con Voi metamorphic core complex, North Vietnam: constraints on the timing of metamorphism within the Red River shear zone. J. Metamorph. Geol. 31, 359–387 (2013).

    Article  CAS  Google Scholar 

  106. Liu, F., Wang, F., Liu, P. & Liu, C. Multiple metamorphic events revealed by zircons from the Diancang Shan−Ailao Shan metamorphic complex, southeastern Tibetan Plateau. Gondwana Res. 24, 429–450 (2013).

    Article  CAS  Google Scholar 

  107. Corfield Richard, I., Searle Mike, P. & Green Owen, R. Photang thrust sheet: an accretionary complex structurally below the Spontang ophiolite constraining timing and tectonic environment of ophiolite obduction, Ladakh Himalaya, NW India. J. Geol. Soc. 156, 1031–1044 (1999).

    Article  Google Scholar 

  108. Salam, H. et al. Kahi mélange complex in Kurram and Waziristan, NW Pakistan: an integrated approach for tectonic implications to India–Afghan suturing. Gondwana Res. 126, 79–95 (2024).

    Article  Google Scholar 

  109. Aitchison, J. C. et al. Tectonic evolution of the western margin of the Burma microplate based on new fossil and radiometric age constraints. Tectonics 38, 1718–1741 (2019).

    Article  Google Scholar 

  110. Wang, H.-Q. et al. Earliest Cretaceous accretion of Neo-Tethys oceanic subduction along the Yarlung Zangbo Suture Zone, Sanjgsang area, southern Tibet. Tectonophysics 744, 373–389 (2018).

    Article  Google Scholar 

  111. Wang, H.-Q. et al. Early Tertiary deformation of the Zhongba–Gyangze thrust in central southern Tibet. Gondwana Res. 41, 235–248 (2017).

    Article  CAS  Google Scholar 

  112. Zhao, Q., Yan, Y., Tonai, S., Dilek, Y. & Zhu, Z. Timing of India–Asia collision and significant coupling between them around 51 Ma: insights from the activation history of the Zhongba–Gyangze thrust in southern Tibet. Geology 52, 61–66 (2023).

    Article  CAS  Google Scholar 

  113. Ratschbacher, L., Frisch, W., Liu, G. & Chen, C. Distributed deformation in southern and western Tibet during and after the India–Asia collision. J. Geophys. Res. 99, 19917–19945 (1994).

    Article  Google Scholar 

  114. Zhang, J., Ji, J., Zhong, D., Ding, L. & He, S. Structural pattern of eastern Himalayan Syntaxis in Namjagbarwa and its formation process. Sci. China Earth Sci. 47, 138–150 (2004).

    Article  Google Scholar 

  115. Xu, Z. et al. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: constraints from deformation, fabrics and geochronology. Gondwana Res. 21, 19–36 (2012).

    Article  Google Scholar 

  116. Haproff, P. J., Odlum, M. L., Zuza, A. V., Yin, A. & Stockli, D. F. Structural and thermochronologic constraints on the cenozoic tectonic development of the Northern Indo‐Burma Ranges. Tectonics 39, e2020TC006231 (2020).

    Article  Google Scholar 

  117. Tang, Y. et al. Diverse structural styles of the Northeastern Tethyan Himalaya in Southern Tibet reveal the early collisional tectonics of India and Asia. Tectonics 43, e2023TC007954 (2024).

    Article  Google Scholar 

  118. Wiesmayr, G. & Grasemann, B. Eohimalayan fold and thrust belt: implications for the geodynamic evolution of the NW‐Himalaya (India). Tectonics 21, 1058 (2002).

    Article  Google Scholar 

  119. DiPietro, J. A., Pullen, A. & Krol, M. A. Geologic history and thermal evolution in the hinterland region, western Himalaya, Pakistan. Earth-Sci. Rev. 223, 103817 (2021).

    Article  Google Scholar 

  120. Smith, H. A., Chamberlain, C. P. & Zeitler, P. K. Timing and duration of himalayan metamorphism within the Indian Plate, Northwest Himalaya, Pakistan. J. Geol. 102, 493–508 (1994).

    Article  Google Scholar 

  121. Li, Z. et al. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia. Geology 44, 727–730 (2016).

    Article  Google Scholar 

  122. Ma, Y. et al. A stable southern margin of Asia during the cretaceous: paleomagnetic constraints on the Lhasa‐Qiangtang collision and the maximum width of the Neo‐Tethys. Tectonics 37, 3853–3876 (2018).

    Article  Google Scholar 

  123. Lippert, P. C., van Hinsbergen, D. J. J. & Dupont-Nivet, G. Early cretaceous to present latitude of the central proto-Tibetan Plateau: a paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. Geol. Soc. Am. Spec. Pap. 507, 1–21 (2014).

    Google Scholar 

  124. Yi, Z., Wang, T., Meert, J. G., Zhao, Q. & Liu, Y. An initial collision of India and Asia in the equatorial humid belt. Geophys. Res. Lett. 48, e2021GL093408 (2021).

    Article  Google Scholar 

  125. Huang, W. et al. What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou basin, Tibet). Tectonics 34, 594–622 (2015).

    Article  CAS  Google Scholar 

  126. Ma, Y. et al. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: insights into the Neotethyan paleogeography and the India–Asia collision. Sci. Rep. 6, 21605 (2016).

    Article  CAS  Google Scholar 

  127. Meng, J. et al. Strengthening the argument for a large Greater India. Proc. Natl Acad. Sci. USA 120, e2305928120 (2023).

    Article  CAS  Google Scholar 

  128. Huang, W. et al. Continuity of the Sangdanlin Paleocene section and rejection of a large Greater India in the Early Cretaceous. Proc. Natl Acad. Sci. USA 121, e2402456121 (2024).

    Article  CAS  Google Scholar 

  129. Bian, W. et al. Palaeomagnetism of the mid-Cretaceous red beds from the Tethyan Himalaya: direction discrepancy and tectonic implications. J. Geol. Soc. 180, jgs2023–jgs2029 (2023).

    Article  Google Scholar 

  130. Patzelt, A., Li, H., Wang, J. & Appel, E. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics 259, 259–284 (1996).

    Article  CAS  Google Scholar 

  131. Dupont-Nivet, G., Lippert, P. C., Van Hinsbergen, D. J. J., Meijers, M. J. M. & Kapp, P. Palaeolatitude and age of the Indo–Asia collision: palaeomagnetic constraints. Geophys. J. Int. 182, 1189–1198 (2010).

    Article  Google Scholar 

  132. Yi, Z., Huang, B., Chen, J., Chen, L. & Wang, H. Paleomagnetism of Early Paleogene marine sediments in southern Tibet, China: implications to onset of the India–Asia collision and size of Greater India. Earth Planet. Sci. Lett. 309, 153–165 (2011).

    CAS  Google Scholar 

  133. Bian, W. et al. Paleomagnetic constraints on the India–Asia collision and the size of greater India. J. Geophys. Res. 126, e2021JB021965 (2021).

    Article  Google Scholar 

  134. Yuan, J. et al. New paleomagnetic data from the central Tethyan Himalaya refine the size of Greater India during the Campanian. Earth Planet. Sci. Lett. 622, 118422 (2023).

    Article  CAS  Google Scholar 

  135. Ali, J. R. & Aitchison, J. C. Greater India. Earth-Sci. Rev. 72, 169–188 (2005).

    Article  Google Scholar 

  136. DeCelles, P. G., Carrapa, B., Gehrels, G. E., Chakraborty, T. & Ghosh, P. Along-strike continuity of structure, stratigraphy, and kinematic history in the Himalayan thrust belt: the view from Northeastern India. Tectonics 35, 2995–3027 (2016).

    Article  Google Scholar 

  137. Meng, J. et al. India-Asia collision was at 24 degrees N and 50 Ma: palaeomagnetic proof from southernmost Asia. Sci. Rep. 2, 925 (2012).

    Article  Google Scholar 

  138. Tong, Y. et al. Early paleocene paleomagnetic results from Southern Tibet, and tectonic implications. Int. Geol. Rev. 50, 546–562 (2008).

    Article  Google Scholar 

  139. Appel, E., Crouzet, C. & Schill, E. Pyrrhotite remagnetizations in the Himalaya: a review. Geol. Soc. Spec. Publ. 371, 163–180 (2013).

    Article  Google Scholar 

  140. Huang, W. et al. Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (southern Tibet) to date the India–Asia collision? J. Geophys. Res. 120, 42–66 (2015).

    Article  Google Scholar 

  141. Dannemann, S. et al. Palaeomagnetic indication for India–Asia collision at 12° N and maximum 810 km Greater India extent in the western suture zone. Geophys. J. Int. 229, 1193–1211 (2022).

    Article  CAS  Google Scholar 

  142. Ma, Y. et al. Paleomagnetism and U–Pb zircon geochronology of Lower Cretaceous lava flows from the western Lhasa terrane: new constraints on the India–Asia collision process and intracontinental deformation within Asia. J. Geophys. Res. 119, 7404–7424 (2014).

    Article  Google Scholar 

  143. Dupont-Nivet, G., Lippert, P. C., Van Hinsbergen, D. J. J., Meijers, M. J. M. & Kapp, P. Palaeolatitude and age of the Indo-Asia collision: palaeomagnetic constraints. Geophys. J. Int. 182, 1189–1198 (2010).

    Article  Google Scholar 

  144. Chen, J., Huang, B., Yi, Z., Yang, L. & Chen, L. Paleomagnetic and 40Ar/39Ar geochronological results from the Linzizong Group, Linzhou Basin, Lhasa Terrane, Tibet: implications to Paleogene paleolatitude and onset of the India–Asia collision. J. Asian Earth Sci. 96, 162–177 (2014).

    Article  Google Scholar 

  145. Dupont-Nivet, G., van Hinsbergen, D. J. J. & Torsvik, T. H. Persistently low Asian paleolatitudes: implications for the India–Asia collision history. Tectonics 29, TC5016 (2010).

    Article  Google Scholar 

  146. Hsü, K. J., Guitang, P. & Sengör, A. M. C. Tectonic evolution of the Tibetan plateau: a working hypothesis based on the archipelago model of orogenesis. Int. Geol. Rev. 37, 473–508 (1995).

    Article  Google Scholar 

  147. Hu, X., Wang, J., An, W., Garzanti, E. & Li, J. Constraining the timing of the India–Asia continental collision by the sedimentary record. Sci. China Earth Sci. 60, 603–625 (2017).

    Article  Google Scholar 

  148. Zhou, H. et al. India–Eurasia convergence speed-up by passive-margin sediment subduction. Nature 635, 114–120 (2024).

    Article  CAS  Google Scholar 

  149. Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci. Rev. 114, 325–368 (2012).

    Article  Google Scholar 

  150. Klaus, S., Morley, R. J., Plath, M., Zhang, Y. P. & Li, J. T. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun. 7, 12132 (2016).

    Article  CAS  Google Scholar 

  151. Jagoutz, O., Royden, L., Holt, A. F. & Becker, T. W. Anomalously fast convergence of India and Eurasia caused by double subduction. Nat. Geosci. 8, 475–478 (2015).

    Article  CAS  Google Scholar 

  152. Martin, C. R. et al. Paleocene latitude of the Kohistan–Ladakh arc indicates multistage India–Eurasia collision. Proc. Natl Acad. Sci. USA 117, 29487–29494 (2020).

    Article  CAS  Google Scholar 

  153. Zhang, L.-L., Liu, C.-Z., Wu, F.-Y., Ji, W.-Q. & Wang, J.-G. Zedong terrane revisited: an intra-oceanic arc within Neo-Tethys or a part of the Asian active continental margin? J. Asian Earth Sci. 80, 34–55 (2014).

    Article  Google Scholar 

  154. Davis, D., Suppe, J. & Dahlen, F. A. Mechanics of fold‐and‐thrust belts and accretionary wedges. J. Geophys. Res. 88, 1153–1172 (2012).

    Article  Google Scholar 

  155. Zheng, T. et al. Direct structural evidence of Indian continental subduction beneath Myanmar. Nat. Commun. 11, 1944 (2020).

    Article  CAS  Google Scholar 

  156. Zhang, Y. & Huang, B. The influence of Cretaceous paleolatitude variation of the Tethyan Himalaya on the India–Asia collision pattern. Sci. China Earth Sci. 60, 1057–1066 (2017).

    Article  CAS  Google Scholar 

  157. Yi, Z. et al. A quasi-linear structure of the southern margin of Eurasia prior to the India–Asia collision: first paleomagnetic constraints from Upper Cretaceous volcanic rocks near the western syntaxis of Tibet. Tectonics 34, 1431–1451 (2015).

    Article  Google Scholar 

  158. Wu, X., Hu, J., Chen, L., Liu, L. & Liu, L. Paleogene India–Eurasia collision constrained by observed plate rotation. Nat. Commun. 14, 7272 (2023).

    Article  CAS  Google Scholar 

  159. Webb, A. A. Preliminary balanced palinspastic reconstruction of Cenozoic deformation across the Himachal Himalaya (northwestern India). Geosphere 9, 572–587 (2013).

    Article  Google Scholar 

  160. Liu, L., Liu, L., Morgan, J. P., Xu, Y. G. & Chen, L. New constraints on Cenozoic subduction between India and Tibet. Nat. Commun. 14, 1963 (2023).

    Article  CAS  Google Scholar 

  161. Li, Y. & Robinson, D. M. The India–Asia collision results from two possible pre-collisional crustal configurations of northern Greater India. Earth Planet. Sci. Lett. 610, 118098 (2023).

    Article  CAS  Google Scholar 

  162. Gaetani, M. & Garzanti, E. Multicyclic history of the Northern India Continental Margin (Northwestern Himalaya)1. AAPG Bull. 75, 1427–1446 (1991).

    Google Scholar 

  163. Wang, C. et al. Formation and evolution of a magmatic system in the Indian passive margin: insights from the Triassic Yumai complex from the eastern Tethyan Himalaya. Geosphere 19, 1709–1728 (2023).

    Article  Google Scholar 

  164. Bosworth, W., Stockli, D. F. & Polat, A. Early magmatism in the greater Red Sea rift: timing and significance. Can. J. Earth Sci. 53, 1158–1176 (2016).

    Article  Google Scholar 

  165. Faccenna, C., Becker, T. W., Jolivet, L. & Keskin, M. Mantle convection in the Middle East: reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet. Sci. Lett. 375, 254–269 (2013).

    Article  CAS  Google Scholar 

  166. van Hinsbergen, D. J. J. et al. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 81, 79–229 (2020).

    Article  Google Scholar 

  167. Alavi, M. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am. J. Sci. 304, 1–20 (2004).

    Article  Google Scholar 

  168. Fakhari, M. D., Axen, G. J., Horton, B. K., Hassanzadeh, J. & Amini, A. Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros. Tectonophysics 451, 170–185 (2008).

    Article  Google Scholar 

  169. Horton, B. K. et al. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451, 97–122 (2008).

    Article  CAS  Google Scholar 

  170. Agard, P. et al. Zagros orogeny: a subduction-dominated process. Geol. Mag. 148, 692–725 (2011).

    Article  Google Scholar 

  171. Ballato, P. et al. Tectonic control on sedimentary facies pattern and sediment accumulation rates in the Miocene foreland basin of the southern Alborz mountains, northern Iran. Tectonics 27, TC6001 (2008).

    Article  Google Scholar 

  172. Saura, E. et al. Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran–Iraq). Tectonics 34, 377–395 (2015).

    Article  Google Scholar 

  173. Pirouz, M., Avouac, J.-P., Hassanzadeh, J., Kirschvink, J. L. & Bahroudi, A. Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening. Earth Planet. Sci. Lett. 477, 168–182 (2017).

    Article  CAS  Google Scholar 

  174. Barber, D. E., Stockli, D. F., Horton, B. K. & Koshnaw, R. I. Cenozoic exhumation and foreland basin evolution of the zagros orogen during the Arabia–Eurasia collision, Western Iran. Tectonics 37, 4396–4420 (2018).

    Article  Google Scholar 

  175. Koshnaw, R. I. et al. Neogene shortening and exhumation of the Zagros fold-thrust belt and foreland basin in the Kurdistan region of northern Iraq. Tectonophysics 694, 332–355 (2017).

    Article  CAS  Google Scholar 

  176. Ballato, P. et al. Arabia–Eurasia continental collision: insights from Late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Geol. Soc. Am. Bull. 123, 106–131 (2011).

    Article  Google Scholar 

  177. James, G. A. & Wynd, J. G. Stratigraphic nomenclature of Iranian oil consortium agreement area 1. AAPG Bull. 49, 2182–2245 (1965).

    Google Scholar 

  178. Homke, S. et al. Late cretaceous–paleocene formation of the proto-Zagros foreland basin, Lurestan province, SW Iran. GSA Bull. 121, 963–978 (2009).

    Article  CAS  Google Scholar 

  179. Pirouz, M., Simpson, G. U. Y., Bahroudi, A. & Azhdari, A. L. I. Neogene sediments and modern depositional environments of the Zagros foreland basin system. Geol. Mag. 148, 838–853 (2011).

    Article  Google Scholar 

  180. Homke, S. et al. Insights in the exhumation history of the NW Zagros from bedrock and detrital apatite fission‐track analysis: evidence for a long‐lived orogeny. Basin Res. 22, 659–680 (2010).

    Article  Google Scholar 

  181. Madanipour, S. et al. The Arabia–Eurasia collision zone in Iran: tectonostratigraphic and structural synthesis. J. Pet. Geol. 47, 123–171 (2024).

    Article  Google Scholar 

  182. Chiu, H.-Y. et al. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162-163, 70–87 (2013).

    Article  CAS  Google Scholar 

  183. Moghadam, H. S. et al. Temporal changes in subduction- to collision-related magmatism in the Neotethyan orogen: the Southeast Iran example. Earth-Sci. Rev. 226, 103930 (2022).

    Article  CAS  Google Scholar 

  184. Pirouz, M., Simpson, G., Castelltort, S., Gorin, G. & Bahroudi, A. Controls on the sequence stratigraphic architecture of the Neogene Zagros foreland basin. Geol. Soc. Am. Spec. Pap. 525, SPE525–512 (2017).

    Google Scholar 

  185. Perotti, C., Chiariotti, L., Bresciani, I., Cattaneo, L. & Toscani, G. Evolution and timing of salt diapirism in the Iranian sector of the Persian Gulf. Tectonophysics 679, 180–198 (2016).

    Article  Google Scholar 

  186. Cai, F. et al. Configuration and timing of collision between Arabia and Eurasia in the zagros collision zone, fars, Southern Iran. Tectonics 40, e2021TC006762 (2021).

    Article  Google Scholar 

  187. GholamiZadeh, P., Hu, X., Garzanti, E. & Adabi, M. H. Constraining the timing of Arabia–Eurasia collision in the Zagros orogen by sandstone provenance (Neyriz, Iran). GSA Bull. 134, 1793–1810 (2022).

    Article  CAS  Google Scholar 

  188. Hessami, K., Koyi, H. A., Talbot, C. J., Tabasi, H. & Shabanian, E. Progressive unconformities within an evolving foreland fold-thrust belt, Zagros Mountains. J. Geol. Soc. 158, 969–981 (2001).

    Article  Google Scholar 

  189. Koshnaw, R. I., Stockli, D. F. & Schlunegger, F. Timing of the Arabia–Eurasia continental collision — evidence from detrital zircon U–Pb geochronology of the Red Bed series strata of the northwest Zagros hinterland, Kurdistan region of Iraq. Geology 47, 47–50 (2018).

    Article  Google Scholar 

  190. Koshnaw, R. I., Schlunegger, F. & Stockli, D. F. Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold-thrust belt, Kurdistan region of Iraq. Solid. Earth 12, 2479–2501 (2021).

    Article  Google Scholar 

  191. Moghadam, H. S. et al. Neotethyan subduction ignited the Iran arc and backarc differently. J. Geophys. Res. 125, e2019JB018460 (2020).

    Article  Google Scholar 

  192. Guest, B., Horton, B. K., Axen, G. J., Hassanzadeh, J. & McIntosh, W. C. Middle to late Cenozoic basin evolution in the western Alborz Mountains: implications for the onset of collisional deformation in northern Iran. Tectonics 26, TC6011 (2007).

    Article  Google Scholar 

  193. Verdel, C., Wernicke, B. P., Hassanzadeh, J. & Guest, B. A Paleogene extensional arc flare‐up in Iran. Tectonics 30, TC3008 (2011).

    Article  Google Scholar 

  194. Stern, R. J., Moghadam, H. S., Pirouz, M. & Mooney, W. The geodynamic evolution of Iran. Annu. Rev. Earth Planet. Sci. 49, 9–36 (2021).

    Article  CAS  Google Scholar 

  195. Omrani, J. et al. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106, 380–398 (2008).

    Article  CAS  Google Scholar 

  196. Aghazadeh, M., Castro, A., Badrzadeh, Z. & Vogt, K. Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran. Geol. Mag. 148, 980–1008 (2011).

    Article  CAS  Google Scholar 

  197. Agard, P. et al. Transient, synobduction exhumation of Zagros blueschists inferred from P–T, deformation, time, and kinematic constraints: implications for Neotethyan wedge dynamics. J. Geophys. Res. 111, B11401 (2006).

    Article  Google Scholar 

  198. Shakerardakani, F. et al. Metamorphic stages in mountain belts during a Wilson cycle: a case study in the central Sanandaj–Sirjan zone (Zagros Mountains, Iran). Geosci. Front. 13, 101272 (2022).

    Article  CAS  Google Scholar 

  199. Davoudian, A. R., Genser, J., Neubauer, F. & Shabanian, N. 40 Ar/ 39 Ar mineral ages of eclogites from North Shahrekord in the Sanandaj–Sirjan Zone, Iran: implications for the tectonic evolution of Zagros orogen. Gondwana Res. 37, 216–240 (2016).

    Article  CAS  Google Scholar 

  200. Ramezani, J. & Tucker, R. D. The saghand region, central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am. J. Sci. 303, 622–665 (2003).

    Article  Google Scholar 

  201. Moghadam, H. S., Li, X.-H., Stern, R. J., Ghorbani, G. & Bakhshizad, F. Zircon U–Pb ages and Hf–O isotopic composition of migmatites from the Zanjan–Takab complex, NW Iran: constraints on partial melting of metasediments. Lithos 240–243, 34–48 (2016).

    Article  CAS  Google Scholar 

  202. Berberian, M. Master ‘blind’ thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241, 193–224 (1995).

    Article  Google Scholar 

  203. Robertson, A. H. F. & Parlak, O. Eocene contractional deformation in the NW corner of the Arabian plate and its relation to Arabia–Eurasia collision in SE Türkiye. Int. Geol. Rev. 67, 717–753 (2024).

    Article  Google Scholar 

  204. Sarkarinejad, K., Faghih, A. & Grasemann, B. Transpressional deformations within the Sanandaj–Sirjan metamorphic belt (Zagros Mountains, Iran). J. Struct. Geol. 30, 818–826 (2008).

    Article  Google Scholar 

  205. Homke, S., Verges, J., Garces, M., Emami, H. & Karpuz, R. Magnetostratigraphy of Miocene–Pliocene Zagros foreland deposits in the front of the Push-e Kush Arc (Lurestan Province, Iran). Earth Planet. Sci. Lett. 225, 397–410 (2004).

    Article  CAS  Google Scholar 

  206. Madanipour, S., Ehlers, T. A., Yassaghi, A. & Enkelmann, E. Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U–Th/He thermochronometry: evidence for the Arabia–Eurasia collision in the NW Iranian Plateau. Tectonics 36, 1538–1561 (2017).

    Article  Google Scholar 

  207. Zhang, Z. et al. From Tethyan subduction to Arabia–Eurasia continental collision: multiple geo-thermochronological signals from granitoids in NW Iran. Paleogeogr. Paleoclimatol. Paleoecol. 621, 111567 (2023).

    Article  Google Scholar 

  208. Torsvik, T. H., Paulsen, T. S., Hughes, N. C., Myrow, P. M. & Ganeod, M. The Tethyan Himalaya: palaeogeographical and tectonic constraints from Ordovician palaeomagnetic data. J. Geol. Soc. 166, 679–687 (2009).

    Article  Google Scholar 

  209. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  210. van der Boon, A. et al. Quantifying Arabia–Eurasia convergence accommodated in the Greater Caucasus by paleomagnetic reconstruction. Earth Planet. Sci. Lett. 482, 454–469 (2018).

    Article  Google Scholar 

  211. Song, P. et al. Paleomagnetism from central Iran reveals Arabia–Eurasia collision onset at the Eocene/Oligocene boundary. Geophys. Res. Lett. 50, e2023GL103858 (2023).

    Article  Google Scholar 

  212. Mouthereau, F. et al. Tertiary sequence of deformation in a thin‐skinned/thick‐skinned collision belt: the Zagros folded bBelt (Fars, Iran). Tectonics 26, TC5006 (2007).

    Article  Google Scholar 

  213. Gavillot, Y., Axen, G. J., Stockli, D. F., Horton, B. K. & Fakhari, M. D. Timing of thrust activity in the high Zagros fold-thrust belt, Iran, from (U–Th)/He thermochronometry. Tectonics 29, TC4025 (2010).

    Article  Google Scholar 

  214. Guilmette, C. et al. Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nat. Geosci. 11, 688–695 (2018).

    Article  CAS  Google Scholar 

  215. Darin, M. H. & Umhoefer, P. J. Diachronous initiation of Arabia–Eurasia collision from eastern Anatolia to the southeastern Zagros Mountains since middle Eocene time. Int. Geol. Rev. 64, 2653–2681 (2022).

    Article  Google Scholar 

  216. Mouthereau, F. et al. Placing limits to shortening evolution in the Pyrenees: role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 33, 2283–2314 (2014).

    Article  Google Scholar 

  217. Bellahsen, N. et al. Collision kinematics in the western external Alps. Tectonics 33, 1055–1088 (2014).

    Article  Google Scholar 

  218. Ding, L. et al. The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth Planet. Sci. Lett. 392, 250–264 (2014).

    Article  CAS  Google Scholar 

  219. Ding, L. et al. Provenance and tectonic evolution of the foreland basin systems in the Gandese–Himalayan collisional orogen belt. Chin. J. Geol. 44, 1289–1311 (2009).

    Google Scholar 

  220. DeCelles, P. G. et al. Stratigraphy, structure, and tectonic evolution of the Himalayan fold‐thrust belt in western Nepal. Tectonics 20, 487–509 (2001).

    Article  Google Scholar 

  221. Sun, J., Sha, J. & Wang, S. Stepwise closure of the Tethyan Seaway and its impact on the Earth’s multi-sphere interactions during the Cenozoic. Chin. Sci. Bull. 69, 184–199 (2024).

    Google Scholar 

  222. Farnsworth, A. et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, eaax1697 (2019).

    Article  CAS  Google Scholar 

  223. Allen, M. B. et al. Contrasting styles of convergence in the Arabia–Eurasia collision: why escape tectonics does not occur in Iran. Geol. Soc. Am. Spec. Pap. 409, 579–589 (2006).

    Google Scholar 

  224. Shu, Y. et al. Illite K–Ar dating of the Leibo fault zone, southeastern margin of the Tibetan Plateau: implications for the quasi‐synchronous far‐field tectonic response to the India–Asia collision. Geophys. Res. Lett. 51, e2023GL108027 (2024).

    Article  CAS  Google Scholar 

  225. Duvall, A. R., Clark, M. K., van der Pluijm, B. A. & Li, C. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth Planet. Sci. Lett. 304, 520–526 (2011).

    Article  CAS  Google Scholar 

  226. Wu, C. et al. Late Mesozoic–Cenozoic cooling history of the northeastern Tibetan Plateau and its foreland derived from low-temperature thermochronology. GSA Bull. 133, 2393–2417 (2021).

    Article  CAS  Google Scholar 

  227. Hollingsworth, J. et al. Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia–Eurasia convergence in NE Iran since the Oligocene. Geophys. J. Int. 181, 1214–1246 (2010).

    Google Scholar 

  228. Gao, Y., Chen, L., Yang, J. & Wang, K. Rheological heterogeneities control the non‐progressive uplift of the young Iranian Plateau. Geophys. Res. Lett. 50, e2022GL101829 (2023).

    Article  Google Scholar 

  229. Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019).

    Article  Google Scholar 

  230. Cande, S. C. & Stegman, D. R. Indian and African plate motions driven by the push force of the Réunion plume head. Nature 475, 47–52 (2011).

    Article  CAS  Google Scholar 

  231. Cogné, J. P. & Humler, E. Trends and rhythms in global seafloor generation rate. Geochem. Geophys. Geosyst. 7, Q03011 (2006).

    Article  Google Scholar 

  232. Patriat, P. & Achache, J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311, 615–621 (1984).

    Article  Google Scholar 

  233. Behr, W. M. & Becker, T. W. Sediment control on subduction plate speeds. Earth Planet. Sci. Lett. 502, 166–173 (2018).

    Article  CAS  Google Scholar 

  234. Duretz, T., Schmalholz, S. M. & Gerya, T. V. Dynamics of slab detachment. Geochem. Geophys. Geosyst. 13, Q03020 (2012).

    Article  Google Scholar 

  235. van Hinsbergen, D. J., Steinberger, B., Doubrovine, P. V. & Gassmöller, R. Acceleration and deceleration of India–Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. 116, B06101 (2011).

    Google Scholar 

  236. Gürer, D., Granot, R. & van Hinsbergen, D. J. J. Plate tectonic chain reaction revealed by noise in the Cretaceous quiet zone. Nat. Geosci. 15, 233–239 (2022).

    Article  Google Scholar 

  237. Li, Y. et al. Cenozoic India–Asia collision driven by mantle dragging the cratonic root. Nat. Commun. 15, 6674 (2024).

    Article  CAS  Google Scholar 

  238. Johansen, S. E. et al. Deep electrical imaging of the ultraslow-spreading Mohns Ridge. Nature 567, 379–383 (2019).

    Article  CAS  Google Scholar 

  239. Hatzfeld, D., Tatar, M., Priestley, K. & Ghafory-Ashtiany, M. Seismological constraints on the crustal structure beneath the Zagros Mountain belt (Iran). Geophys. J. Int. 155, 403–410 (2003).

    Article  Google Scholar 

  240. Nábelek, J. et al. Underplating in the Himalaya–Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325, 1371–1374 (2009).

    Article  Google Scholar 

  241. Kind, R. et al. Seismic images of crust and upper mantle beneath tibet: evidence for Eurasian plate subduction. Science 298, 1219–1221 (2002).

    Article  CAS  Google Scholar 

  242. Murphy, M. A. & Yin, A. Structural evolution and sequence of thrusting in the Tethyan fold-thrust belt and Indus-Yalu suture zone, southwest Tibet. GSA Bull. 115, 21–34 (2003).

    Article  Google Scholar 

  243. Kufner, S. K. et al. The Hindu Kush slab break-off as revealed by deep structure and crustal deformation. Nat. Commun. 12, 1685 (2021).

    Article  CAS  Google Scholar 

  244. Zhao, J. et al. The boundary between the Indian and Asian tectonic plates below Tibet. Proc. Natl Acad. Sci. USA 107, 11229–11233 (2010).

    Article  CAS  Google Scholar 

  245. Klemperer, S. L. et al. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision. Proc. Natl Acad. Sci. USA 119, e2113877119 (2022).

    Article  CAS  Google Scholar 

  246. Wu, Z. et al. Lateral structural variation of the lithosphere‐asthenosphere system in the Northeastern to Eastern Iranian plateau and its tectonic implications. J. Geophys. Res. Solid Earth 126, e2020JB020256 (2021).

    Article  Google Scholar 

  247. Agard, P., Searle, M. P., Alsop, G. I. & Dubacq, B. Crustal stacking and expulsion tectonics during continental subduction: P–T deformation constraints from Oman. Tectonics 29, TC5018 (2010).

    Article  Google Scholar 

  248. Tapponnier, P. et al. Oblique stepwise rise and growth of the Tibet Plateau. Science 294, 1671–1677 (2001).

    Article  CAS  Google Scholar 

  249. Hofmann, P. & Wagner, T. ITCZ controls on Late Cretaceous black shale sedimentation in the tropical Atlantic Ocean. Paleoceanography 26, PA4223 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank D.J.J. van Hinsbergen for insightful discussions. This work was supported by the National Natural Science Foundation of China (92355002), National Natural Science Foundation of China Excellent Research Group for Tibetan Plateau Earth System (continuation grant), the National Natural Science Foundation of China (42172240), and the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0708).

Author information

Authors and Affiliations

Authors

Contributions

L.D. conceived the idea and organized the writing process. L.D. and C.W. wrote the first draft of the manuscript and prepared the visualizations. All authors made substantial contributions to the discussion of the content and reviewed and edited the manuscript.

Corresponding author

Correspondence to Lin Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Shihu Li, Frédéric Mouthereau, Zhiyu Yi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Adakites

A specific type of intermediate to felsic volcanic rock that has distinct geochemical characteristics produced by partial melting of young oceanic crust or thickened crust.

Eclogites

High-pressure metamorphic rocks characterized by distinctive mineral assemblages (such as garnet–omphacite). Eclogites form at pressures typically greater than 1.2 GPa, corresponding to depths of more than 40 km.

Intertropical Convergence Zone

A zone of low atmospheric pressure that encircles the Earth near the thermal equator where the trade winds of the Northern and Southern Hemispheres converge.

Orogenic belt

Tectonic expression of convergent margins and plate boundaries, usually characterized by folds, faults, metamorphic rocks and the formation of mountains.

Prograde

Metamorphic processes characterized by increasing temperature and pressure conditions.

Suture zone

Geological boundaries where two distinct tectonic terranes or plates collided and were welded together.

Terrane

A distinct and identifiable fragment distinguished from adjacent domains by different geological features, including origin, lithology, stratigraphy and geological history.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Ding, L., Xiong, Z. et al. Timing of initial collision and suturing processes in the Himalaya and Zagros. Nat Rev Earth Environ 6, 357–376 (2025). https://doi.org/10.1038/s43017-025-00669-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-025-00669-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing