Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metal mining is a global driver of environmental change

Abstract

Global metal extraction is increasing, owing to rising mineral demands from infrastructure development and the growing need for metal-intensive renewable energy technologies to mitigate climate change and phase out coal mining. However, extraction of metal ores also drives impacts on land use, water resources and biodiversity. In this Review, we evaluate mining trends of 47 metal ores between 1970 and 2022 and explore the environmental consequences. Global extraction of crude metal ores has nearly quadrupled, from 2.7 gigatonnes (Gt) in 1970 to almost 9.4 Gt in 2022, with the greatest increases in Oceania (+1,222%), South America (+929%) and Asia (+285%). Ore-specific mining activities are generally concentrated, with the top-five producers contributing on average 82.7% of the global supply in 2022. The impacts of mining are also concentrated. In 2022, about 50% of the 100,000 km2 global mining areas were located in Russia, China, Australia, the United States and Indonesia. Mining-induced water consumption, pollution and biodiversity loss substantially affect local ecosystems, with tropical rainforests and deserts being especially vulnerable. Around 70% of global metal extraction is linked to international supply chains. Enhanced environmental assessments, stricter implementation of policies, and coordinated actions across sectors throughout supply chains (mining, processing, consumers and financial markets) can help to mitigate the environmental impacts of mining.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Open-pit mining and mine-site infrastructure.
Fig. 2: Global trends of crude metal ore extraction.
Fig. 3: Contribution of top-five producers to global crude ore extraction.
Fig. 4: Global extraction trends of energy transition materials.
Fig. 5: Environmental changes driven by metal extraction.
Fig. 6: Global patterns of mining-related environmental issues.
Fig. 7: International trade increasingly drives global metal ore extraction.

Similar content being viewed by others

Data availability

The extraction data used in Figs. 2 and 3 are available at https://doi.org/10.5281/zenodo.13843918 (ref. 58) based on an update of the metal accounts in the Global Material Flows Database developed for the United Nations International Resource Panel (UN IRP)194. Data used in Fig. 7 are available from the UN IRP Global Material Flows Database. Additional materials are available from the corresponding author upon request.

Code availability

The code used for data compilation and figure generation is available at https://doi.org/10.5281/zenodo.15189697.

References

  1. Global Resources Outlook 2024. Bend the Trend — Pathways to a Liveable Planet as Resource Use Spikes (UNEP, 2024).

  2. Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 112, 6271 (2021).

    Google Scholar 

  3. Schandl, H. et al. Global material flows and resource productivity: forty years of evidence. J. Ind. Ecol. 22, 827–838 (2017).

    Article  Google Scholar 

  4. Krausmann, F., Schandl, H., Eisenmenger, N., Giljum, S. & Jackson, T. Material flow accounting: measuring global material use for sustainable development. Ann. Rev. Environ. Resour. 42, 647–675 (2017).

    Article  Google Scholar 

  5. Wiedenhofer, D. et al. Mapping and modelling global mobility infrastructure stocks, material flows and their embodied greenhouse gas emissions. J. Clean. Prod. 434, 139742 (2024).

    Article  CAS  Google Scholar 

  6. Deetman, S. et al. Modelling global material stocks and flows for residential and service sector buildings towards 2050. J. Clean. Prod. 245, 118658 (2020).

    Article  Google Scholar 

  7. Rousseau, L. S. A. et al. Material stock and embodied greenhouse gas emissions of global and urban road pavement. Environ. Sci. Technol. 56, 18050–18059 (2022).

    Article  CAS  Google Scholar 

  8. Krausmann, F. et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl Acad. Sci. USA 114, 1880–1885 (2017).

    Article  CAS  Google Scholar 

  9. Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences (OECD, 2019).

  10. Fishman, T., Schandl, H. & Tanikawa, H. Stochastic analysis and forecasts of the patterns of speed, acceleration, and levels of material stock accumulation in society. Environ. Sci. Technol. 50, 3729–3737 (2016).

    Article  CAS  Google Scholar 

  11. Gielen, D. et al. The role of renewable energy in the global energy transformation. Energy Strat. Rev. 24, 38–50 (2019).

    Article  Google Scholar 

  12. Wiedenhofer, D. et al. Prospects for a saturation of humanity’s resource use? An analysis of material stocks and flows in nine world regions from 1900 to 2035. Global Environ. Change 71, 102410 (2021).

    Article  Google Scholar 

  13. Hodgkinson, J. H. & Smith, M. H. Climate change and sustainability as drivers for the next mining and metals boom: the need for climate-smart mining and recycling. Resour. Policy 74, 101205 (2021).

    Article  Google Scholar 

  14. Watari, T., Nansai, K. & Nakajima, K. Major metals demand, supply, and environmental impacts to 2100: a critical review. Resour. Conserv. Recycl. 164, 105107 (2021).

    Article  CAS  Google Scholar 

  15. Elshkaki, A., Graedel, T. E., Ciacci, L. & Reck, B. K. Resource demand scenarios for the major metals. Environ. Sci. Technol. 52, 2491–2497 (2018).

    Article  CAS  Google Scholar 

  16. Watari, T., Nansai, K. & Nakajima, K. Review of critical metal dynamics to 2050 for 48 elements. Resour. Conserv. Recycl. 155, 104669 (2020).

    Article  Google Scholar 

  17. The Role of Critical Minerals in Clean Energy Transitions. World Energy Outlook Special Report (IEA, 2021).

  18. Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

    Article  Google Scholar 

  19. Giljum, S. et al. A pantropical assessment of deforestation caused by industrial mining. Proc. Natl Acad. Sci. USA 119, e2118273119 (2022).

    Article  CAS  Google Scholar 

  20. Aguirre-Villegas, H. A. & Benson, C. H. Case history of environmental impacts of an Indonesian coal supply chain. J. Clean. Prod. 157, 47–56 (2017).

    Article  Google Scholar 

  21. Nijnens, J., Behrens, P., Kraan, O., Sprecher, B. & Kleijn, R. Energy transition will require substantially less mining than the current fossil system. Joule 7, 2408–2413 (2023).

    Article  Google Scholar 

  22. Luckeneder, S., Giljum, S., Schaffartzik, A., Maus, V. & Tost, M. Surge in global metal mining threatens vulnerable ecosystems. Global Environ. Change 69, 102303 (2021).

    Article  Google Scholar 

  23. Sonter, L., Dade, M., Watson, J. & Valenta, R. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 11, 4174 (2020).

    Article  CAS  Google Scholar 

  24. Lèbre, É. et al. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 11, 4823 (2020).

    Article  Google Scholar 

  25. Bulayani, M., Raghupatruni, P., Mamvura, T. & Danha, G. Exploring low-grade iron ore beneficiation techniques: a comprehensive review. Minerals 14, 796 (2024).

    Article  CAS  Google Scholar 

  26. Feng, Q. et al. Flotation of copper oxide minerals: a review. Int. J. Min. Sci. Technol 32, 1351–1364 (2022).

    Article  CAS  Google Scholar 

  27. Werner, T. T. et al. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Change 60, 102007 (2020).

    Article  Google Scholar 

  28. Maus, V. et al. A global-scale data set of mining areas. Nat. Sci. Data 7, 289 (2020).

    Article  Google Scholar 

  29. Shobe, C. M., Bower, S. J., Maxwell, A. E., Glade, R. C. & Samassi, N. M. The uncertain future of mountaintop-removal-mined landscapes 1: how mining changes erosion processes and variables. Geomorphology 445, 108984 (2024).

    Article  Google Scholar 

  30. Sonter, L. J., Moran, C. J., Barrett, D. J. & Soares-Filho, B. S. Processes of land use change in mining regions. J. Clean. Prod. 84, 494–501 (2014).

    Article  Google Scholar 

  31. Werner, T. T., Bebbington, A. & Gregory, G. Assessing impacts of mining: recent contributions from GIS and remote sensing. Extr. Ind. Soc. 6, 993–1012 (2019).

    Google Scholar 

  32. González-Morales, M., Fernández-Pozo, L. & Ángeles Rodrguez-González, M. Threats of metal mining on ecosystem services. Environ. Res. 214, 114036 (2022).

    Article  Google Scholar 

  33. Armendáriz-Villegas, E. J. et al. Metal mining and natural protected areas in Mexico: geographic overlaps and environmental implications. Environ. Sci. Policy 48, 9–19 (2015).

    Article  Google Scholar 

  34. Kramer, M. et al. Extracted Forests: Unearthing the Role of Mining-Related Deforestation as a Driver of Global Deforestation (WWF, 2023).

  35. Meißner, S. The impact of metal mining on global water stress and regional carrying capacities — a GIS-based water impact assessment. Resources https://doi.org/10.3390/resources10120120 (2021).

  36. Macklin, M. G. et al. Impacts of metal mining on river systems: a global assessment. Science 381, 1345–1350 (2023).

    Article  CAS  Google Scholar 

  37. Sonter, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8, 1013 (2017).

    Article  Google Scholar 

  38. Junker, J. et al. Threat of mining to African great apes. Sci. Adv. 10.1126/sciadv.adl0335 (2024).

  39. Schenker, V., Kulionis, V., Oberschelp, C. & Pfister, S. Metals for low-carbon technologies: environmental impacts and relation to planetary boundaries. J. Clean. Prod. 372, 133620 (2022).

    Article  Google Scholar 

  40. Thomassen, G., Eswaran, A., van Passel, S. & Dewulf, J. A planetary boundary for mineral, metal, and fossil resource extraction rates: how much primary materials can a circular economy extract? Environ. Sci. Technol. 58, 20345–20351 (2024).

    Article  CAS  Google Scholar 

  41. Sonter, L. J. et al. How to fuel an energy transition with ecologically responsible mining. Proc. Natl Acad. Sci. USA 120, e2307006120 (2023).

    Article  CAS  Google Scholar 

  42. Nature. Position Statement (International Council on Mining and Metals, 2024).

  43. Handbook on Environmental Due Diligence in Mineral Supply Chains (OECD, 2023).

  44. Corporate Sustainability Due Diligence Directive. P9_TA(2024)0329 (European Parliament, 2024).

  45. Sonter, L. J., Ali, S. H. & Watson, J. E. M. Mining and biodiversity: key issues and research needs in conservation science. Proc. Biol. Sci. 285, 20181926 (2018).

    Google Scholar 

  46. Boldy, R., Santini, T., Annandale, M., Erskine, P. D. & Sonter, L. J. Understanding the impacts of mining on ecosystem services through a systematic review. Extr. Ind. Soc. 8, 457–466 (2021).

    Google Scholar 

  47. Agboola, O. et al. A review on the impact of mining operation: monitoring, assessment and management. Results Eng. 8, 100181 (2020).

    Article  Google Scholar 

  48. Farjana, S. H., Huda, N., Parvez Mahmud, M. A. & Saidur, R. A review on the impact of mining and mineral processing industries through life cycle assessment. J. Clean. Prod. 231, 1200–1217 (2019).

    Article  Google Scholar 

  49. The Use of Natural Resources in the Economy: A Global Manual on Economy Wide Material Flow Accounting (UN Statistics Division, 2020).

  50. Eurostat. Economy-Wide Material Flow Accounts: Handbook, 2018 edn (European Commission, 2018).

  51. Standard & Poors. Gold mine stripping ratios rise on high prices, grades continue declining. https://www.spglobal.com/marketintelligence/en/news-insights/research/gold-mine-stripping-ratios-rise-on-high-prices-grades-continue-declining (2023).

  52. CSIRO. Technical Annex for Global Material Flows Database, 2024 edn, https://www.resourcepanel.org/sites/default/files/technical_annex_for_global_material_flows_database_-_vers_4_june_2024.pdf (Australia National Science Agency, 2024).

  53. Watari, T. & Yokoi, R. International inequality in in-use metal stocks: what it portends for the future. Resour. Policy 70, 101968 (2021).

    Article  Google Scholar 

  54. Tracking Progress Toward Tripling Renewable Energy Capacity and Doubling Energy Efficiency by 2030 (International Renewable Energy Agency, 2024).

  55. Li, L. et al. Review and outlook on the international renewable energy development. Energy Built Environ. 3, 139–157 (2022).

    Article  Google Scholar 

  56. Critical Raw Materials for Strategic Technologies and Sectors in the EU: A Foresight Study (Joint Research Centre, 2020).

  57. Reichl, C. & Schatz, M. World Mining Data 2024 (Federal Ministry of Finance, 2024).

  58. Kroiss, A. & Giljum, S. Global extraction accounts of crude metal ores, 1970–2022. Zenodo https://doi.org/10.5281/zenodo.13843919 (2024).

  59. Dilshara, P. et al. The role of nickel as a critical metal in clean energy transition: applications, global distribution and occurrences, production-demand and phytomining. J. Asian Earth Sci. 259, 105912 (2024).

    Article  Google Scholar 

  60. Martins, L. S., Guimarães, L. F., Botelho Junior, A. B., Tenório, J. A. S. & Espinosa, D. C. R. Electric car battery: an overview on global demand, recycling and future approaches towards sustainability. J. Environ. Manag. 295, 113091 (2021).

    Article  Google Scholar 

  61. CEPAL. Lithium Extraction and Industrialization: Opportunities and Challenges for Latin America and the Caribbean (ECLAC, 2023).

  62. Bahini, Y., Mushtaq, R. & Bahoo, S. Global energy transition: the vital role of cobalt in renewable energy. J. Clean. Prod. 470, 143306 (2024).

    Article  CAS  Google Scholar 

  63. Haque, N., Hughes, A., Lim, S. & Vernon, C. Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 3, 614–635 (2014).

    Article  Google Scholar 

  64. Mancheri, N. A., Sprecher, B., Bailey, G., Ge, J. & Tukker, A. Effect of Chinese policies on rare earth supply chain resilience. Resour. Conserv. Recycl. 142, 101–112 (2019).

    Article  Google Scholar 

  65. Bebbington, A. J. et al. Resource extraction and infrastructure threaten forest cover and community rights. Proc. Natl Acad. Sci. USA 115, 13164–13173 (2018).

    Article  CAS  Google Scholar 

  66. Murguía, D. I., Bringezu, S. & Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: spatial distribution and implications for conservation. J. Environ. Manag. 180, 409–420 (2016).

    Article  Google Scholar 

  67. Azadi, M., Northey, S. A., Ali, S. H. & Edraki, M. Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nat. Geosci. 13, 100–104 (2020).

    Article  CAS  Google Scholar 

  68. Zheng, X. et al. Greenhouse gas emissions from extractive industries in a globalized era. J. Environ. Manag. 343, 118172 (2023).

    Article  CAS  Google Scholar 

  69. Ulrich, S., Trench, A. & Hagemann, S. Gold mining greenhouse gas emissions, abatement measures, and the impact of a carbon price. J. Clean. Prod. 340, 130851 (2022).

    Article  CAS  Google Scholar 

  70. Owen, J. R. et al. Increasing mine waste will induce land cover change that results in ecological degradation and human displacement. J. Environ. Manag. 351, 119691 (2024).

    Article  Google Scholar 

  71. Maus, V. et al. An update on global mining land use. Sci. Data 9, 433 (2022).

    Article  Google Scholar 

  72. Marazuela, M., Vázquez-Suñé, E., Ayora, C., Garca-Gil, A. & Palma, T. The effect of brine pumping on the natural hydrodynamics of the Salar de Atacama: the damping capacity of salt flats. Sci. Total Environ. 654, 1118–1131 (2019).

    Article  CAS  Google Scholar 

  73. Barenblitt, A. et al. The large footprint of small-scale artisanal gold mining in Ghana. Sci. Total Environ. 781, 146644 (2021).

    Article  CAS  Google Scholar 

  74. Calvo, G., Palacios, J.-L. & Valero, A. The influence of ore grade decline on energy consumption and GhG emissions: the case of gold. Environ. Dev. 41, 100683 (2022).

    Article  Google Scholar 

  75. Calvo, G., Mudd, G., Valero, A. & Valero, A. Decreasing ore grades in global metallic mining: a theoretical issue or a global reality? Resources 5, 36 (2016).

    Article  Google Scholar 

  76. Northey, S., Mohr, S., Mudd, G. M., Weng, Z. & Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 83, 190–201 (2014).

    Article  Google Scholar 

  77. Teseletso, L. S. & Adachi, T. Future availability of mineral resources: ultimate reserves and total material requirement. Min. Econ. 36, 189–206 (2023).

    Article  Google Scholar 

  78. Mudd, G. M. The environmental sustainability of mining in Australia: key mega-trends and looming constraints. Resour. Policy 35, 98–115 (2010).

    Article  Google Scholar 

  79. Bainton, N., Kemp, D., Lèbre, E., Owen, J. R. & Marston, G. The energy–extractives nexus and the just transition. Sustain. Dev. 29, 624–634 (2021).

    Article  Google Scholar 

  80. Tang, L. & Werner, T. T. Global mining footprint mapped from high-resolution satellite imagery. Commun. Earth Environ 4, 134 (2023).

    Article  Google Scholar 

  81. Souza, C. M. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sens. https://doi.org/10.3390/rs12172735 (2020).

  82. Annual Land Use Land Cover Maps of Brazil https://brasil.mapbiomas.org/en/ (MapBiomas Project, 2024).

  83. Mataveli, G. et al. Mining is a growing threat within indigenous lands of the Brazilian Amazon. Remote Sens. 14, 4092 (2022).

    Article  Google Scholar 

  84. Heijlen, W. & Duhayon, C. An empirical estimate of the land footprint of nickel from laterite mining in Indonesia. Extr. Ind. Soc. 17, 101421 (2024).

    Google Scholar 

  85. Quash, Y., Kross, A. & Jaeger, J. A. Assessing the impact of gold mining on forest cover in the Surinamese Amazon from 1997 to 2019: a semi-automated satellite-based approach. Ecol. Inform. 80, 102442 (2024).

    Article  Google Scholar 

  86. Hayes, W. M. et al. Predicting the loss of forests, carbon stocks and biodiversity driven by a neotropical ‘gold rush’. Biol. Conserv. 286, 110312 (2023).

    Article  Google Scholar 

  87. Siqueira-Gay, J., Sonter, L. J. & Sánchez, L. E. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 67, 101662 (2020).

    Article  Google Scholar 

  88. Bonfatti, R. & Poelhekke, S. From mine to coast: transport infrastructure and the direction of trade in developing countries. J. Dev. Econ 127, 91–108 (2017).

    Article  Google Scholar 

  89. Ladewig, M., Angelsen, A., Masolele, R. N. & Chervier, C. Deforestation triggered by artisanal mining in eastern Democratic Republic of the Congo. Nat. Sustain. 7, 1452–1460 (2024).

    Article  Google Scholar 

  90. Social Progress in Mining-Dependent Countries: Analysing the Role of Resource Governance in Delivering the UN Sustainable Development Goals (International Council on Mining and Metals, 2021).

  91. Kumi, S., Adu-Poku, D. & Attiogbe, F. Dynamics of land cover changes and condition of soil and surface water quality in a mining-altered landscape, Ghana. Heliyon 9, e17859 (2023).

    Article  CAS  Google Scholar 

  92. Abe, C. A., Lobo, F. L., Novo, E. M. Ld. M., Costa, M. & Dibike, Y. Modeling the effects of land cover change on sediment concentrations in a gold-mined Amazonian basin. Reg. Environ. Change 19, 1801–1813 (2019).

    Article  Google Scholar 

  93. Souza-Filho, P. W. M. et al. Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. J. Environ. Manag. 167, 175–184 (2016).

    Article  Google Scholar 

  94. Torres-Cruz, L. A. & O’Donovan, C. Public remotely sensed data raise concerns about history of failed Jagersfontein dam. Sci. Rep. 13, 4953 (2023).

    Article  CAS  Google Scholar 

  95. Aires, U. R. V., Santos, B. S. M., Coelho, C. D., Da Silva, D. D. & Calijuri, M. L. Changes in land use and land cover as a result of the failure of a mining tailings dam in Mariana, MG, Brazil. Land Use Policy 70, 63–70 (2018).

    Article  Google Scholar 

  96. Silva Rotta, L. H. et al. The 2019 Brumadinho tailings dam collapse: possible cause and impacts of the worst human and environmental disaster in Brazil. Int. J. Appl. Earth Obs. Geoinf. 90, 102119 (2020).

    Google Scholar 

  97. UN Water. The United Nations World Water Development Report 2024: Water for Prosperity and Peace (United Nations, 2024).

  98. Aitken, D., Rivera, D., Godoy-Faúndez, A. & Holzapfel, E. Water scarcity and the impact of the mining and agricultural sectors in Chile. Sustainability 8, 128 (2016).

    Article  Google Scholar 

  99. Northey, S. A., Mudd, G. M., Saarivuori, E., Wessman-Jääskeläinen, H. & Haque, N. Water footprinting and mining: where are the limitations and opportunities? J. Clean. Prod. 135, 1098–1116 (2016).

    Article  Google Scholar 

  100. Water Reporting. Good Practice Guide 2nd edn (International Council of Mining and Metals, 2021).

  101. Northey, S. A., Mudd, G. M., Werner, T. T., Haque, N. & Yellishetty, M. Sustainable water management and improved corporate reporting in mining. Water Resour. Ind. 21, 100104 (2019).

    Article  Google Scholar 

  102. Boulay, A.-M. et al. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (aware). Int. J. Life Cycle Assess. 23, 368–378 (2018).

    Article  Google Scholar 

  103. Flexer, V., Baspineiro, C. F. & Galli, C. I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 639, 1188–1204 (2018).

    Article  CAS  Google Scholar 

  104. Schomberg, A. C. & Bringezu, S. How can the water use of lithium brine mining be adequately assessed? Resour. Conserv. Recycl. 190, 106806 (2023).

    Article  Google Scholar 

  105. Vera, M. L., Torres, W. R., Galli, C. I., Chagnes, A. & Flexer, V. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 4, 149–165 (2023).

    Article  CAS  Google Scholar 

  106. Akcil, A. & Koldas, S. Acid mine drainage (AMD): causes, treatment and case studies. J. Clean. Prod. 14, 1139–1145 (2006).

    Article  Google Scholar 

  107. Simate, G. S. & Ndlovu, S. Acid mine drainage: challenges and opportunities. J. Environ. Chem. Eng. 2, 1785–1803 (2014).

    Article  CAS  Google Scholar 

  108. Gerson, J. R. et al. Artificial lake expansion amplifies mercury pollution from gold mining. Sci. Adv. 6, eabd4953 (2020).

    Article  CAS  Google Scholar 

  109. Gerson, J. R. et al. Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nat. Commun. 13, 1–10 (2022).

    Article  Google Scholar 

  110. Hacon, Sd. S. et al. Mercury exposure through fish consumption in traditional communities in the Brazilian Northern Amazon. Int. J. Environ. Res. Public Health 17, 5269 (2020).

    Article  Google Scholar 

  111. Holley, E. A. & Mitcham, C. The Pebble mine dialogue: a case study in public engagement and the social license to operate. Resour. Policy 47, 18–27 (2016).

    Article  Google Scholar 

  112. Ghorbani, Y. & Kuan, S. H. A review of sustainable development in the Chilean mining sector: past, present and future. Int. J. Min. Reclam. Environ. 31, 137–165 (2017).

    Article  Google Scholar 

  113. Bebbington, A. & Williams, M. Water and mining conflicts in Peru. Mountain Res. Dev. 28, 190–195 (2008).

    Article  Google Scholar 

  114. Salem, J. et al. An analysis of Peru: is water driving mining conflicts? Resour. Policy 74, 101270 (2018).

    Article  Google Scholar 

  115. Sosa, M. & Zwarteveen, M. Exploring the politics of water grabbing: the case of large mining operations in the Peruvian Andes. Water Altern. 5, 360 (2012).

    Google Scholar 

  116. Cole, M. J. ESG risks to global platinum supply: a case study of Mogalakwena mine, South Africa. Resour. Policy 85, 104054 (2023).

    Article  Google Scholar 

  117. Odell, S. D., Bebbington, A. & Frey, K. E. Mining and climate change: a review and framework for analysis. Extr. Ind. Soc. 5, 201–214 (2018).

    Google Scholar 

  118. Pontes, P. R. M. et al. Effects of climate change on hydrology in the most relevant mining basin in the eastern legal Amazon. Water 14, 1416 (2022).

    Article  Google Scholar 

  119. Liang, G., Liang, Y., Niu, D. & Shaheen, M. Balancing sustainability and innovation: the role of artificial intelligence in shaping mining practices for sustainable mining development. Resour. Policy 90, 104793 (2024).

    Article  Google Scholar 

  120. IPBES. Global assessment report on biodiversity and ecosystem services. Zenodo https://doi.org/10.5281/zenodo.3831673 (2019).

  121. Diaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).

    Article  CAS  Google Scholar 

  122. Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).

    Article  Google Scholar 

  123. Owen, J. R. et al. Energy transition minerals and their intersection with land-connected peoples. Nat. Sustain. 6, 203–211 (2023).

    Article  Google Scholar 

  124. Durán, A. P., Rauch, J. & Gaston, K. J. Global spatial coincidence between protected areas and metal mining activities. Biol. Conserv. 160, 272–278 (2013).

    Article  Google Scholar 

  125. Lamb, I. P., Massam, M. R., Mills, S. C., Bryant, R. G. & Edwards, D. P. Global threats of extractive industries to vertebrate biodiversity. Curr. Biol. 34, 3673–3684.e4 (2024).

    Article  CAS  Google Scholar 

  126. Cabernard, L. & Pfister, S. Hotspots of mining-related biodiversity loss in global supply chains and the potential for reduction through renewable electricity. Environ. Sci. Technol. 56, 16357–16368 (2022).

    Article  CAS  Google Scholar 

  127. International Union for Conservation of Nature, The Biodiversity Consultancy & Durrel Institute of Conservation and Ecology. Global Inventory of Biodiversity Offset Policies (GIBOP) https://portals.iucn.org/offsetpolicy/ (IUCN, 2019).

  128. Performance Standard 6. Biodiversity Conservation and Sustainable Management of Living Natural Resources (International Finance Cooperation, 2012).

  129. Rainey, H. J. et al. A review of corporate goals of no net loss and net positive impact on biodiversity. Oryx 49, 232–238 (2015).

    Article  Google Scholar 

  130. BBOP. Standard on Biodiversity Offsets (Forest Trends, 2012).

  131. A Cross-Sector Guide for Implementing the Mitigation Hierarchy (Cross-Sector Biodiversity Initiative, 2019).

  132. zu Ermgassen, S. O. et al. The ecological outcomes of biodiversity offsets under ‘no net loss’ policies: a global review. Conserv. Lett. 12, e12664 (2019).

    Article  Google Scholar 

  133. Gastauer, M., Caldeira, C. F., Ramos, S. J., Silva, D. F. & Siqueira, J. O. Active rehabilitation of Amazonian sand mines converges soils, plant communities and environmental status to their predisturbance levels. Land Degrad. Dev. 31, 607–618 (2020).

    Article  Google Scholar 

  134. Bidaud, C. et al. The sweet and the bitter: intertwined positive and negative social impacts of a biodiversity offset. Conserv. Soc. 15, 1–13 (2017).

    Article  Google Scholar 

  135. Siqueira-Gay, J., Metzger, J. P., Sánchez, L. E. & Sonter, L. J. Strategic planning to mitigate mining impacts on protected areas in the Brazilian Amazon. Nat. Sustain. 5, 853–860 (2022).

    Article  Google Scholar 

  136. Boldy, R., Annandale, M., Erskine, P. D. & Sonter, L. J. Assessing impacts of mining on provisioning ecosystem services in a culturally diverse landscape of Western Cape York, Australia. Landsc. Ecol. 38, 4467–4481 (2023).

    Article  Google Scholar 

  137. Westside Open Cut Mine Returns to Bushland (NSW Government, 2020).

  138. Forest-Smart Mining: Offset Case Studies. Tech. Rep. (World Bank, 2019).

  139. 2023 State of the Artisanal and Small-Scale Mining Sector (World Bank, 2023).

  140. Knutsen, C. H., Kotsadam, A., Olsen, E. H. & Wig, T. Mining and local corruption in Africa. Am. J. Pol. Sci. 61, 320–334 (2017).

    Article  Google Scholar 

  141. van der Ploeg, F. Natural resources: curse or blessing? J. Econ. Lit. 49, 366–420 (2011).

    Article  Google Scholar 

  142. Muñoz, P., Giljum, S. & Roca, J. The raw material equivalents of international trade: empirical evidence for Latin America. J. Ind. Ecol. 13, 881–897 (2009).

    Article  Google Scholar 

  143. Kovanda, J. & Weinzettel, J. The importance of raw material equivalents in economy-wide material flow accounting and its policy dimension. Environ. Sci. Policy 29, 71–80 (2013).

    Article  Google Scholar 

  144. Flückiger, M., Larch, M., Ludwig, M. & Pascali, L. The Dawn of Civilization: Metal Trade and the Rise of Hierarchy. CESifo Working Paper No. 10929 (CESIfo, 2024).

  145. Schaffartzik, A., Mayer, A., Eisenmenger, N. & Krausmann, F. Global patterns of metal extractivism, 1950–2010: providing the bones for the industrial society’s skeleton. Ecol. Econ. 122, 101–110 (2016).

    Article  Google Scholar 

  146. Yellishetty, M. & Mudd, G. M. Substance flow analysis of steel and long term sustainability of iron ore resources in Australia, Brazil, China and India. J. Clean. Prod. 84, 400–410 (2014).

    Article  Google Scholar 

  147. Tcha, M. & Wright, D. Determinants of China’s import demand for Australia’s iron ore. Resour. Policy 25, 143–149 (1999).

    Article  Google Scholar 

  148. Korinek, J. Trade restrictions on minerals and metals. Min. Econ. 32, 171–185 (2019).

    Article  Google Scholar 

  149. Golev, A. & Corder, G. Modelling metal flows in the Australian economy. J. Clean. Prod. 112, 4296–4303 (2016).

    Article  Google Scholar 

  150. Eurostat. International Trade in Goods by Type of Good (European Commission, 2024).

  151. Luckeneder, S., Giljum, S., Maus, V., Sonter, L. J. & Lenzen, M. EU consumption’s hidden link to global deforestation caused by mining. Ecol. Econ. Papers https://doi.org/10.57938/b890eed0-1ab4-43af-b577-df48f43290a6 (2024).

  152. Tukker, A. et al. Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Glob. Environ. Change 40, 171–181 (2016).

    Article  Google Scholar 

  153. Zhou, Y. et al. Assessing the short-to medium-term supply risks of clean energy minerals for China. J. Clean. Prod. 215, 217–225 (2019).

    Article  Google Scholar 

  154. van den Brink, S., Kleijn, R., Tukker, A. & Huisman, J. Approaches to responsible sourcing in mineral supply chains. Resour. Conserv. Recycl. 145, 389–398 (2019).

    Article  Google Scholar 

  155. Piñero, P., Bruckner, M., Wieland, H., Pongrácz, E. & Giljum, S. The raw material basis of global value chains: allocating responsibility based on value generation. Econ. Syst. Res. 31, 206–227 (2019).

    Article  Google Scholar 

  156. Xu, X., Wang, Q., Ran, C. & Mu, M. Is burden responsibility more effective? A value-added method for tracing worldwide carbon emissions. Ecol. Econ. 181, 106889 (2021).

    Article  Google Scholar 

  157. Zeng, Y., Dong, P., Shi, Y., Wang, L. & Li, Y. Analyzing the co-evolution of green technology diffusion and consumers’ pro-environmental attitudes: an agent-based model. J. Clean. Prod. 256, 120384 (2020).

    Article  Google Scholar 

  158. Arendt, R., Muhl, M., Bach, V. & Finkbeiner, M. Criticality assessment of abiotic resource use for Europe — application of the SCARCE method. Resour. Policy 67, 101650 (2020).

    Article  Google Scholar 

  159. Distefano, T., Lodi, L. & Biggeri, M. Material footprint and import dependency in EU27: past trends and future challenges. J. Clean. Prod. 472, 143384 (2024).

    Article  Google Scholar 

  160. Tackling the Challenges in Commodity Markets and on Raw Materials. COM(2011) 25 Final (European Commission, 2011).

  161. Critical Raw Materials Act. COM(2023) 160 (European Commission, 2023).

  162. Bebbington, A., Fash, B. & Rogan, J. Socio-environmental conflict, political settlements, and mining governance: a cross-border comparison, El Salvador and Honduras. Lat. Am. Perspect. 46, 84–106 (2019).

    Article  Google Scholar 

  163. Spalding, R. J. From the streets to the chamber: social movements and the mining ban in El Salvador. Eur. Rev. Latin Am. Carib. Studies https://www.jstor.org/stable/26608620 (2018).

  164. Standard for Responsible Mining. IRMA-STD-001 (Initiative for Responsible Mining Assurance, 2018).

  165. Background Paper for the UN Secretary-General’s Panel on Critical Energy Transition Minerals (United Nations, 2024).

  166. Directive on Corporate Sustainability Due Diligence. Frequently Asked Questions (European Commission, 2024).

  167. Lèbre, É., Corder, G. & Golev, A. The role of the mining industry in a circular economy: a framework for resource management at the mine site level. J. Ind. Ecol. 21, 662–672 (2017).

    Article  Google Scholar 

  168. Joensuu, T., Edelman, H. & Saari, A. Circular economy practices in the built environment. J. Clean. Prod. 276, 124215 (2020).

    Article  Google Scholar 

  169. Aguilar Esteva, L. C., Kasliwal, A., Kinzler, M. S., Kim, H. C. & Keoleian, G. A. Circular economy framework for automobiles: closing energy and material loops. J. Ind. Ecol. 25, 877–889 (2021).

    Article  Google Scholar 

  170. Ramage, M. H. et al. The wood from the trees: the use of timber in construction. Renew. Sustain. Energy Rev. 68, 333–359 (2017).

    Article  Google Scholar 

  171. Duan, Z., Huang, Q. & Zhang, Q. Life cycle assessment of mass timber construction: a review. Build. Environ. 221, 109320 (2022).

    Article  Google Scholar 

  172. Hickel, J. et al. Urgent need for post-growth climate mitigation scenarios. Nat. Energy 6, 766–768 (2021).

    Article  Google Scholar 

  173. Slameršak, A., Kallis, G., O’Neill, D. W. & Hickel, J. Post-growth: a viable path to limiting global warming to 1.5 °C. One Earth 7, 44–58 (2023).

    Article  Google Scholar 

  174. Boykoff, M. T. Creative (Climate) Communications: Productive Pathways for Science, Policy and Society (Cambridge Univ. Press, 2019).

  175. Wiedmann, T. O., Schandl, H. & Moran, D. The footprint of using metals: new metrics of consumption and productivity. Environ. Econ. Policy Studies 17, 369–388 (2015).

    Article  Google Scholar 

  176. Maus, V. & Werner, T. T. Impacts for half of the world’s mining areas are undocumented. Nature 625, 26–29 (2024).

    Article  CAS  Google Scholar 

  177. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  178. Jasansky, S., Lieber, M., Giljum, S. & Maus, V. An open database on global coal and metal mine production. Sci. Data 10, 52 (2023).

    Article  Google Scholar 

  179. Zhang, C., Xing, J., Li, J., Du, S. & Qin, Q. A new method for the extraction of tailing ponds from very high-resolution remotely sensed images: PSVED. Int. J. Digital Earth 16, 2681–2703 (2023).

    Article  Google Scholar 

  180. Du, S. et al. Open-pit mine change detection from high resolution remote sensing images using DA-UNet++ and object-based approach. Int. J. Min. Reclam. Environ. 36, 512–535 (2022).

    Article  CAS  Google Scholar 

  181. Saputra, M. R. U. et al. Multi-modal deep learning approaches to semantic segmentation of mining footprints with multispectral satellite imagery. Remote Sens. Environ. 318, 114584 (2025).

    Article  Google Scholar 

  182. Jasansky, S., Maus, V., Popa, M. & Wilbik, A. Semantic segmentation of mining areas in satellite images: towards a global approach. Preprint at https://papers.ssrn.com/abstract=5114132 (2025).

  183. Crona, B., Parlato, G., Lade, S., Fetzer, I. & Maus, V. Going beyond carbon: an ‘Earth system impact’ score to better capture corporate and investment impacts on the Earth system. J. Clean. Prod. 429, 139523 (2023).

    Article  CAS  Google Scholar 

  184. Escobar, N. et al. Spatially-explicit footprints of agricultural commodities: mapping carbon emissions embodied in Brazil’s soy exports. Global Environ. Change 62, 102067 (2020).

    Article  Google Scholar 

  185. Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect Earth observation to economic decisions. One Earth 3, 5–8 (2020).

    Article  Google Scholar 

  186. Wieland, H. et al. The PIOLab: building global physical input–output tables in a virtual laboratory. J. Ind. Ecol. 26, 683–703 (2021).

    Article  Google Scholar 

  187. Sun, X., Hao, H., Zhao, F. & Liu, Z. Tracing global lithium flow: a trade-linked material flow analysis. Resour. Conserv. Recycl. 124, 50–61 (2017).

    Article  Google Scholar 

  188. Kinnunen, P., Karhu, M., Yli-Rantala, E., Kivikytö-Reponen, P. & Mäkinen, J. A review of circular economy strategies for mine tailings. Clean. Eng. Technol. 8, 100499 (2022).

    Article  Google Scholar 

  189. Cotrina-Teatino, M. A. & Marquina-Araujo, J. J. Circular economy in the mining industry: a bibliometric and systematic literature review. Resour. Policy 102, 105513 (2025).

    Article  Google Scholar 

  190. Cisternas, L. A., Ordóñez, J. I., Jeldres, R. I. & Serna-Guerrero, R. Toward the implementation of circular economy strategies: an overview of the current situation in mineral processing. Miner. Process. Extr. Metall. Rev. 43, 775–797 (2022).

    Article  Google Scholar 

  191. Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E. & Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 4, 71–79 (2021).

    Article  Google Scholar 

  192. Ruokamo, E. et al. Exploring the potential of circular economy to mitigate pressures on biodiversity. Glob. Environ. Change 78, 102625 (2023).

    Article  Google Scholar 

  193. Wiedenhofer, D. et al. From extraction to end-uses and waste management: modeling economy-wide material cycles and stock dynamics around the world. J. Ind. Ecol. 28, 1464–1480 (2024).

    Article  Google Scholar 

  194. UNEP International Resource Panel. Global Material Flows Database. Version 2023, https://www.resourcepanel.org/global-material-flows-database (UNEP, 2023).

  195. Dimech, A. et al. A review on applications of time-lapse electrical resistivity tomography over the last 30 years: perspectives for mining waste monitoring. Surv. Geophys. 43, 1699–1759 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The work of S.G., Se.L. and St.L. was supported by the Austrian Science Fund (FWF; grant agreement no. EFP 5) and EU’s Horizon Europe research and innovation programme (RAWCLIC project, grant agreement no. 101183654). The work of V.M. was supported by grants from the EU’s Horizon Europe research and innovation programme (Open Earth Monitor project under grant agreement no. 101059548 and RAWCLIC project, grant agreement no. 101183654) and from the International Climate Initiative (Transparent Monitoring project, grant agreement no. 20_III_108).

Author information

Authors and Affiliations

Authors

Contributions

S.G. conceived the idea, outlined the structure and led the writing. Se.L., J.G. and V.M. produced the figures. All authors wrote sections of the article and edited the manuscript.

Corresponding author

Correspondence to Stefan Giljum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Robert Pell, who co-reviewed with Tara Ryan and Keno Ignace; and Takuma Watari for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Alliance for Responsible Mining (ARM): https://www.responsiblemines.org

Global Industry Standard on Tailings Management (GISTM): https://globaltailingsreview.org/global-industry-standard/

Global Material Flows Database (UN International Resource Panel): https://www.resourcepanel.org/global-material-flows-database

Initiative for Responsible Mining Assurance (IRMA): https://responsiblemining.net

International Council on Mining and Metals (ICMM): https://www.icmm.com

Lead the Charge: leadthecharge.org

Web-based environmental screening tool (South Africa): https://screening.environment.gov.za/screeningtool

Working Group Water Use in Life Cycle Assessment (WULCA): https://wulca-waterlca.org

World Development Indicators: https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giljum, S., Maus, V., Sonter, L. et al. Metal mining is a global driver of environmental change. Nat Rev Earth Environ 6, 441–455 (2025). https://doi.org/10.1038/s43017-025-00683-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-025-00683-w

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene