Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbon- and energy-efficient ethanol electrosynthesis via interfacial cation enrichment

Abstract

The use of acidic electrolytes in CO2 reduction avoids costly carbonate loss. However, the energy efficiency of acid-fed electrolysers has been limited by high hydrogen production and operating potentials. We find that these stem from the lack of alkali cations at the catalyst surface, limiting CO2 and CO adsorption. In acid-fed membrane electrode assembly systems, the incorporation of these cations is challenging as there is no flowing catholyte. Here an interfacial cation matrix (ICM)–catalyst heterojunction is designed that directly attaches to the catalyst layer. The negatively charged nature of the ICM enriches the alkali cation concentration near the cathode surface, trapping generated hydroxide ions. This increases the local electric field and pH, increasing multi-carbon production. Integrating the ICM strategy with a tailored copper–silver catalyst enables selective ethanol production through a proton-spillover mechanism. We report a 45% CO2-to-ethanol Faradaic efficiency at 200 mA cm−2, carbon efficiency of 63%, full-cell ethanol energy efficiency of 15% (3-fold improvement over the best previous acidic CO2 reduction value) and energy cost of 260 GJ per tonne ethanol, the lowest among reported ethanol-producing CO2 electrolysers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Carbon intensity and performance evaluation of CO2R in MEA electrolysers.
Fig. 2: Characterization of the ICM with a Cu catalyst.
Fig. 3: Design of a Cu–Ag catalyst for enhanced ethanol production.
Fig. 4: Mechanism of selective ethanol production and stable performance of ICM-equipped Cu–Ag catalyst in an MEA.

Similar content being viewed by others

Data availability

All data supporting the findings of this study, including computational specifics, and other experimental and microscopic analyses, can be found in the Article and its Supplementary Information.

References

  1. Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Gao, D., Arán-Ais, R. M., Jeon, H. S. & Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019).

    Article  CAS  Google Scholar 

  3. Nguyen, T. N. et al. Catalyst regeneration via chemical oxidation enables long-term electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 144, 13254–13265 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, S., Fan, Q., Xia, R. & Meyer, T. J. CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 53, 255–264 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Ethanol Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2017–2022. Transparency Market Research (2018). https://www.transparencymarketresearch.com/ethanol-market.html.

  6. Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).

    Article  CAS  Google Scholar 

  7. Wang, P. et al. Boosting electrocatalytic CO2-to-ethanol production via asymmetric C–C coupling. Nat. Commun. 13, 1–11 (2022).

    Google Scholar 

  8. Gu, Z. et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 5, 429–440 (2021).

    Article  CAS  Google Scholar 

  9. Adnan, M. A. et al. Directly-deposited ultrathin solid polymer electrolyte for enhanced CO2 electrolysis. Adv. Energy Mater. https://doi.org/10.1002/aenm.202203158 (2023).

    Article  Google Scholar 

  10. Shang, L. et al. Efficient CO2 electroreduction to ethanol by Cu3Sn catalyst. Small Methods 6, 2101334 (2022).

    Article  CAS  Google Scholar 

  11. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2019).

    Article  Google Scholar 

  12. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    Article  CAS  Google Scholar 

  13. Kim, C. et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6, 1026–1034 (2021).

    Article  CAS  Google Scholar 

  14. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 10–12 (2020).

    Article  Google Scholar 

  15. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article  CAS  Google Scholar 

  16. O’Brien, C. P. et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021).

    Article  Google Scholar 

  17. Xu, Y. et al. A microchanneled solid electrolyte for carbon-efficient CO2 electrolysis. Joule 6, 1333–1343 (2022).

    Article  CAS  Google Scholar 

  18. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Fan, M. et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat. Catal. 6, 763–772 (2023).

    Article  CAS  Google Scholar 

  20. Zhao, Y. et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth. 2, 403–412 (2023).

    CAS  Google Scholar 

  21. Bohra, D., Chaudhry, J. H., Burdyny, T., Pidko, E. A. & Smith, W. A. Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system. Energy Environ. Sci. 12, 3380–3389 (2019).

    Article  CAS  Google Scholar 

  22. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, B. et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric–thermal field on copper nanoneedles. J. Am. Chem. Soc. 144, 3039–3049 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, K. et al. Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett. 6, 4291–4298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan, B. et al. Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly. ACS Energy Lett. 7, 4224–4231 (2022).

    Article  CAS  Google Scholar 

  26. Garg, S. et al. How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers. Energy Environ. Sci. 16, 1631–1643 (2023).

    Article  CAS  Google Scholar 

  27. Konwar, L. J., Mäki-Arvela, P. & Mikkola, J. P. SO3H-containing functional carbon materials: synthesis, structure, and acid catalysis. Chem. Rev. 119, 11576–11630 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Kusoglu, A. & Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Shi, S., Liu, Z., Lin, Q., Chen, X. & Kusoglu, A. Role of ionic interactions in the deformation and fracture behavior of perfluorosulfonic-acid membranes. Soft Matter 16, 1653–1667 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Shi, S., Weber, A. Z. & Kusoglu, A. Structure–transport relationship of perfluorosulfonic-acid membranes in different cationic forms. Electrochim. Acta 220, 517–528 (2016).

    Article  CAS  Google Scholar 

  31. Jervis, R. et al. The importance of using alkaline ionomer binders for screening electrocatalysts in alkaline electrolyte. J. Electrochem. Soc. 164, F1551–F1555 (2017).

    Article  CAS  Google Scholar 

  32. Lees, E. W. et al. Linking gas diffusion electrode composition to CO2 reduction in a flow cell. J. Mater. Chem. A 8, 19493–19501 (2020).

    Article  CAS  Google Scholar 

  33. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  34. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  CAS  Google Scholar 

  35. Ooka, H., Figueiredo, M. C. & Koper, M. T. M. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33, 9307–9313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Weng, L.-C., Bell, A. T. & Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20, 16973–16984 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Li, G. et al. Electrode engineering for electrochemical CO2 reduction. Energy Fuels 36, 4234–4249 (2022).

    Article  CAS  Google Scholar 

  39. Li, M. et al. The role of electrode wettability in electrochemical reduction of carbon dioxide. J. Mater. Chem. A 9, 19369–19409 (2021).

    Article  CAS  Google Scholar 

  40. Ozden, A. et al. Energy- and carbon-efficient CO2/CO electrolysis to multicarbon products via asymmetric ion migration–adsorption. Nat. Energy 8, 179–190 (2023).

    Article  CAS  Google Scholar 

  41. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  PubMed  Google Scholar 

  42. Xie, K. et al. Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nat. Commun. 13, 3609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng, Y. et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).

    Article  CAS  Google Scholar 

  45. Li, Y. C. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Clark, E. L., Hahn, C., Jaramillo, T. F. & Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    Article  CAS  Google Scholar 

  48. Chang, X., Zhao, Y. & Xu, B. pH dependence of Cu surface speciation in the electrochemical CO reduction reaction. ACS Catal. 10, 13737–13747 (2020).

    Article  CAS  Google Scholar 

  49. Hou, J., Chang, X., Li, J., Xu, B. & Lu, Q. Correlating CO coverage and co electroreduction on cu via high-pressure in situ spectroscopic and reactivity investigations. J. Am. Chem. Soc. 144, 22202–22211 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Chang, X. et al. C–C coupling is unlikely to be the rate-determining step in the formation of C2+ products in the copper-catalyzed electrochemical reduction of CO. Angew. Chem. Int. Ed. 61, e202111167 (2022).

    Article  CAS  Google Scholar 

  51. Li, J. et al. Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper. Nat. Commun. 12, 1–11 (2021).

    Google Scholar 

  52. Santatiwongchai, J., Faungnawakij, K. & Hirunsit, P. Comprehensive mechanism of CO2 electroreduction toward ethylene and ethanol: the solvent effect from explicit water–Cu(100) interface models. ACS Catal. 11, 9688–9701 (2021).

    Article  CAS  Google Scholar 

  53. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Miao, R. K. et al. Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule 5, 2742–2753 (2021).

    Article  CAS  Google Scholar 

  55. Li, F., Zhou, C. & Klinkova, A. Simulating electric field and current density in nanostructured electrocatalysts. Phys. Chem. Chem. Phy. https://doi.org/10.1039/d2cp02846h (2022).

  56. Lark, T. J. et al. Environmental outcomes of the US Renewable Fuel Standard. Proc. Natl Acad. Sci. USA 119, e2101084119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xie, Y. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022).

    Article  CAS  Google Scholar 

  58. Wang, X. et al. Ag+-doped InSe nanosheets for membrane electrode assembly electrolyzer toward large-current electroreduction of CO2 to ethanol. Angew. Chem. Int. Ed. 62, e202313646 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding for this work from the Government of Canada’s New Frontiers in Research Fund (NFRF), CANSTOREnergy project NFRFT-2022-00197, NRC and the University of Toronto Collaboration Centre Program in Green Energy Materials (CC-GEM, GEM-PRJ-01), Ontario Research Foundation Research Excellence Program and the CIFAR Bio-Inspired Solar Energy programme. D.S. acknowledges the support received from the Canada Research Chairs programme. A.S.Z. thanks NSERC for a Postdoctoral Fellowship. T.A. acknowledges graduate scholarships and fellowships from Hatch, NSERC and the University of Toronto. We also acknowledge Compute Canada for providing computing resources. We appreciate the Ontario Centre for the Characterization of Advanced Materials (OCCAM) at the University of Toronto for conducting microscopy characterizations. We thank M. Chehelamirani for his assistance in preparing the graphical abstract.

Author information

Authors and Affiliations

Authors

Contributions

D.S. and E.H.S. supervised the project. A.S.Z. conceived the idea and performed the electrochemical experiments and analyses. A.S.Z. and T.A. co-wrote the manuscript. F.L. performed the DFT calculations. F.L. and T.A. carried out the FEM simulation. R.D. assisted with the DFT calculation and manuscript writing. E.S., F.A., C.P.O., R.K.M. and D.Y. helped with electrochemical experiments. J.K. assisted with TEM imaging. A.O. and Y.Z. assisted with the catalyst preparation. P.P., D.K. and S.P. carried out the XAS measurements. M.Z. assisted with the schematics. L.F. carried out the X-ray diffraction measurement. C.M.G., J.P.E. and A.H.I. assisted with the research advice, discussions and editing. All authors contributed to the manuscript editing.

Corresponding author

Correspondence to David Sinton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Remco Hartkamp, Yanguang Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Discussion and Tables 1–8.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayesteh Zeraati, A., Li, F., Alkayyali, T. et al. Carbon- and energy-efficient ethanol electrosynthesis via interfacial cation enrichment. Nat. Synth 4, 75–83 (2025). https://doi.org/10.1038/s44160-024-00662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00662-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing