Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Methylation of reverse osmosis membrane for superior anti-fouling performance via blocking carboxyl groups in polyamide

An Author Correction to this article was published on 31 January 2025

This article has been updated

Abstract

The lifespan of reverse osmosis (RO) membranes is only several months when used for industrial wastewater treatment rather than several years for seawater desalination, dramatically increasing the maintenance cost of RO. Here, to improve the separation and anti-fouling performance and thus increase the lifespan of RO membranes, we developed a creative strategy to methylate RO membranes via grafting gaseous dimethylamine molecules onto polyamide (PA) of RO membrane during interfacial polymerization. The dimethylamine-grafted RO membrane achieved a high water permeance of 3.84 l m−2 h1 bar1 and a high NaCl rejection of 99.05% and exhibited unprecedented anti-fouling performance against small organic charged foulants, surpassing the upper-bound threshold of the other reported anti-fouling membranes and the well-known commercial anti-fouling RO membrane (DuPont FilmTec Fortilife CR100). Both experimental results and molecular dynamics simulation findings illustrate that the methylated PA has a lower absorption energy with small charged organic foulants than the pristine PA, which alleviates the foulantsʼ absorption with a lower areal density and a looser packing, and a much shallower penetration depth inside PA. Our work suggests that avoiding penetration of foulants inside PA and preventing pore blocking of PA by foulants are essential to improve the fouling resistance of RO membranes. This work contributes a new outlook on the RO membrane-fouling mechanism from the molecular levels using molecular dynamics simulation and also develops a simple and effective methylation approach to enhance the RO membrane-fouling resistance towards small charged foulants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication and characterization of the DMA-modified RO membranes.
Fig. 2: Membrane surface morphologies, surface properties and separation performances.
Fig. 3: Anti-fouling properties of the pristine and the DMA-modified RO membranes.
Fig. 4: The adsorption behaviours of the positively and negatively charged small foulants including SDS and DTAB on both pristine PA and DMA-PA, along with the characteristics of the adsorbed cake layers, monitored by QCM-D.
Fig. 5: Molecular dynamics simulation of DTAB absorption on the DMA-grafted PA and the pristine PA.
Fig. 6: Side views of DTAB and SDS absorbed on the pristine PA surface and the DMA-grafted PA surface and also penetrated inside both PAs.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are contained within the paper. Key experimental datasets and source files for figures and extended data are attached as Supplementary Information. All other relevant data are available from the corresponding author upon reasonable request.

Code availability

All codes written for and used in this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Elimelech, M. & Phillip, W. A. The future of seawater and the environment. Science 333, 712–717 (2011).

    CAS  PubMed  Google Scholar 

  2. Shen, L. et al. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving. Nat. Commun. 13, 500 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu, Y. Grand challenge in membrane applications: liquid. Front. Membr. Sci. Tech. 2, 1177528 (2023).

    Google Scholar 

  4. Yao, Y. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4, 138–146 (2021).

    Google Scholar 

  5. Liu, C. et al. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: from mechanisms to mitigation strategies. Water Res. 195, 116976 (2021).

    CAS  PubMed  Google Scholar 

  6. Eke, J. et al. The global status of desalination: an assessment of current desalination technologies, plants and capacity. Desalination 495, 114633 (2020).

    CAS  Google Scholar 

  7. Culp, T. E. et al. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 371, 72–75 (2021).

    CAS  PubMed  Google Scholar 

  8. Giammar, D. E., Greene, D. M. & Mishrra, A. Cost and energy metrics for municipal water reuse. ACS ES&T Eng. 2, 489–507 (2021).

    Google Scholar 

  9. Geise, G. M. Why polyamide reverse-osmosis membranes work so well. Science 371, 31–32 (2021).

    CAS  PubMed  Google Scholar 

  10. Jafari, M. et al. Cost of fouling in full-scale reverse osmosis and nanofiltration installations in the Netherlands. Desalination 500, 114865 (2021).

    CAS  Google Scholar 

  11. Zhang, R. et al. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. 45, 5888–5924 (2016).

    CAS  PubMed  Google Scholar 

  12. Deng, L. et al. Fabrication of antifouling thin-film composite nanofiltration membrane via surface grafting of polyethyleneimine followed by zwitterionic modification. J. Membr. Sci. 619, 118564 (2021).

    CAS  Google Scholar 

  13. Zhang, S. et al. Optimization and organic fouling behavior of zwitterion-modified thin-film composite polyamide membrane for water reclamation: a comprehensive study. J. Membr. Sci. 596, 117748 (2020).

    CAS  Google Scholar 

  14. Jiang, S., Li, Y. & Ladewig, B. P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 595, 567–583 (2017).

    CAS  PubMed  Google Scholar 

  15. Into, M., Jönsson, A. S. & Lengdén, G. Reuse of industrial wastewater following treatment with reverse osmosis. J. Membr. Sci. 242, 21–25 (2004).

    CAS  Google Scholar 

  16. Landaburu-Aguirre, J. et al. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination 393, 16–30 (2016).

    CAS  Google Scholar 

  17. Lu, X. & Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chem. Soc. Rev. 50, 6290–6307 (2021).

    CAS  PubMed  Google Scholar 

  18. Habib, S. & Weinman, S. T. A review on the synthesis of fully aromatic polyamide reverse osmosis membranes. Desalination 502, 114939 (2021).

    CAS  Google Scholar 

  19. Mo, Y. et al. Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups. Environ. Sci. Technol. 46, 13253–13261 (2012).

    CAS  PubMed  Google Scholar 

  20. Li, S. L. et al. Construction of pseudo-zwitterionic polyamide RO membranes surface by grafting positively charged small molecules. Desalination 537, 115892 (2022).

    CAS  Google Scholar 

  21. Guan, Y. et al. Preparation of antifouling TFC RO membranes by facile grafting zwitterionic polymer PEI-CA. Desalination 539, 115972 (2022).

    CAS  Google Scholar 

  22. Qin, Y. et al. Impact of end groups of small molecules grafted to reverse osmosis membranes on their separation and antifouling performance. Desalination 586, 117864 (2024).

    CAS  Google Scholar 

  23. Zhao, Q. et al. Construction of tunable “silica molecular brush” on the polyamide membrane surface for enhancing water permeability and antifouling performance. Desalination 554, 116521 (2023).

    CAS  Google Scholar 

  24. Xiao, J. et al. Fouling-resistant reverse osmosis membranes grafted with 2-aminoethanethiol having a low interaction energy with charged foulants. npj Clean Water 33, 1 (2024).

    Google Scholar 

  25. Liu, M. et al. In situ modification of polyamide reverse osmosis membrane module for improved fouling resistance. Chem. Eng. Res. Des. 141, 402–412 (2019).

    CAS  Google Scholar 

  26. Xu, J., Wang, Z., Wang, J. & Wang, S. Positively charged aromatic polyamide reverse osmosis membrane with high anti-fouling property prepared by polyethylenimine grafting. Desalination 365, 398–406 (2015).

    CAS  Google Scholar 

  27. Wu, J. et al. Polyvinylamine-grafted polyamide reverse osmosis membrane with improved antifouling property. J. Membr. Sci. 495, 1–13 (2015).

    CAS  Google Scholar 

  28. Yi, Z. et al. Chemical grafting N-GOQD of polyamide reverse osmosis membrane with improved chlorine resistance, water flux and NaCl rejection. Desalination 479, 114341 (2020).

    CAS  Google Scholar 

  29. Xu, R. et al. Enhancing the chlorine stability and antifouling properties of thin-film composite reverse osmosis membranes via surface grafting L-arginine-functionalized polyvinyl alcohol. Ind. Eng. Chem. Res. 59, 10882–10893 (2020).

    CAS  Google Scholar 

  30. Shen, L. & Wang, Y. Efficient surface modification of thin-film composite membranes with self-catalyzed tris(2-aminoethyl) amine for forward osmosis separation. Chem. Eng. Sci. 178, 82–92 (2018).

    CAS  Google Scholar 

  31. Zhang, X. et al. Facile dual-functionalization of polyamide reverse osmosis membrane by a natural polypeptide to improve the antifouling and chlorine-resistant properties. J. Membr. Sci. 604, 118044 (2020).

    CAS  Google Scholar 

  32. Zhao, C. et al. Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion–ion separation. Nat. Commun. 14, 1112 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, D. et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+. J. Membr. Sci. 635, 119504 (2021).

    CAS  Google Scholar 

  34. Shi, M. et al. Solvent activation before heat-treatment for improving reverse osmosis membrane performance. J. Membr. Sci. 595, 117565 (2020).

    CAS  Google Scholar 

  35. Liu, Z. Y. et al. Understanding the antifouling mechanism of zwitterionic monomer-grafted polyvinylidene difluoride membranes: a comparative experimental and molecular dynamics simulation study. ACS Appl. Mater. Interfaces 11, 14408–14417 (2019).

    CAS  PubMed  Google Scholar 

  36. Liu, Z., Qi, L., An, X., Liu, C. & Hu, Y. Surface engineering of thin film composite polyamide membranes with silver nanoparticles through layer-by-layer interfacial polymerization for antibacterial properties. ACS Appl. Mat. Inter. 9, 40987–40997 (2017).

    CAS  Google Scholar 

  37. Lin, J. et al. Shielding effect enables fast ion transfer through nanoporous membrane for highly energy-efficient electrodialysis. Nat. Water 1, 725–735 (2023).

    CAS  Google Scholar 

  38. Zhao, G., Gao, H., Qu, Z., Fan, H. & Meng, H. Anhydrous interfacial polymerization of sub-1 Å sieving polyamide membrane. Nat. Commun. 14, 7624 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Guan, K. et al. Deformation constraints of graphene oxide nanochannels under reverse osmosis. Nat. Commun. 14, 1016 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tiraferri, A. & Elimelech, M. Direct quantification of negatively charged functional groups on membrane surfaces. J. Membr. Sci. 389, 499–508 (2012).

    CAS  Google Scholar 

  41. Do, V. T., Tang, C. Y., Reinhard, M. & Leckie, J. O. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environ. Sci. Technol. 46, 852–859 (2012).

    CAS  PubMed  Google Scholar 

  42. Nieuwendaal, R. C. et al. A method to quantify composition, purity, and cross-link density of the active polyamide layer in reverse osmosis composite membranes using 13C cross polarization magic angle spinning nuclear magnetic resonance spectroscopy. J. Membr. Sci. 648, 120346 (2022).

    CAS  Google Scholar 

  43. Teng, M. Y. et al. Plasma deposition of acrylamide onto novel aromatic polyamide membrane for pervaporation. Eur. Polym. J. 36, 663–672 (2000).

    CAS  Google Scholar 

  44. Aston, J. G., Eidinoff, M. L. & Forster, W. S. The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of dimethylamine. J. Am. Chem. Soc. 61, 1539–1543 (1939).

    CAS  Google Scholar 

  45. Li, Y. et al. Loosening ultrathin polyamide nanofilms through alkali hydrolysis for high-permselective nanofiltration. J. Membr. Sci. 637, 119623 (2021).

    CAS  Google Scholar 

  46. Xu, J., Yan, H., Zhang, Y., Pan, G. & Liu, Y. The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of TFC membranes. J. Membr. Sci. 541, 174–188 (2017).

    CAS  Google Scholar 

  47. Liu, C., Faria, A. F., Ma, J. & Elimelech, M. Mitigation of biofilm development on thin-film composite membranes functionalized with zwitterionic polymers and silver nanoparticles. Environ. Sci. Technol. 51, 182–191 (2017).

    CAS  PubMed  Google Scholar 

  48. Yuan, B., Zhao, S., Hu, P., Cui, J. & Niu, Q. J. Asymmetric polyamide nanofilms with highly ordered nanovoids for water purification. Nat. Commun. 11, 6102 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nikkola, J. et al. Surface modification of thin film composite polyamide membrane using atomic layer deposition method. J. Membr. Sci. 450, 174–180 (2014).

    CAS  Google Scholar 

  50. Wang, Z. et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat. Commun. 9, 2004 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Liu, M., Chen, Q., Wang, L., Yu, S. & Gao, C. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA). Desalination 367, 11–20 (2015).

    CAS  Google Scholar 

  52. An, X. et al. Improving the water permeability and antifouling property of the nanofiltration membrane grafted with hyperbranched polyglycerol. J. Membr. Sci. 612, 118417 (2020).

    CAS  Google Scholar 

  53. Zhang, W., Qin, Y., Shi, W. & Hu, Y. Unveiling the molecular mechanisms of thickness-dependent water dynamics in an ultrathin free-standing polyamide membrane. J. Phys. Chem. B 124, 11939–11948 (2020).

    CAS  PubMed  Google Scholar 

  54. Foglia, F., Frick, B., Nania, M., Livingston, A. G. & Cabral, J. T. Multimodal confined water dynamics in reverse osmosis polyamide membranes. Nat. Commun. 13, 2809 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiang, Y., Xu, R. G. & Leng, Y. How alginate monomers contribute to organic fouling on polyamide membrane surfaces? J. Membr. Sci. 643, 120078 (2022).

    CAS  Google Scholar 

  56. Wen, Y., Dai, R. & Li, X. Metal-organic framework enables ultraselective polyamide membrane for desalination and water reuse. Sci. Adv. 8, eabm4149 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou, Z., Wang, Q., Qin, Y. & Hu, Y. Internal concentration polarization in the polyamide active layer of thin-film composite membranes. Environ. Sci. Technol. 57, 5999–6007 (2023).

    CAS  PubMed  Google Scholar 

  58. Dai, R. et al. Nanovehicle-assisted monomer shuttling enables highly permeable and selective nanofiltration membranes for water purification. Nat. Water 1, 281–290 (2023).

    CAS  Google Scholar 

  59. Zhang, W., Chu, R., Shi, W. & Hu, Y. Quantitively unveiling the activity-structure relationship of polyamide membrane: a molecular dynamics simulation study. Desalination 528, 115640 (2022).

    CAS  Google Scholar 

  60. Gastwirth, J. L., Gel, Y. R. & Miao, W. The impact of Levene’s test of equality of variances on statistical theory and practice. Stat. Sci. 24, 343–360 (2009).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Nitto Denko Corporation and National Natural Science Foundation of China (numbers 21978215 and 22378314).

Author information

Authors and Affiliations

Authors

Contributions

Y.H., S.H. and Y.Q. designed the research and proposed the idea. Y.Q. carried out fabrication of RO membranes. Y.Q., J.X. and J.W. conducted the performance tests and characterization of RO membranes. P.Q. carried out the molecular dynamics simulation and the corresponding data display. Y.Q. created the initial figures and paper. W.S. participated in discussion. Y.Q., P.Q., S.H. and Y.H. co-wrote the paper.

Corresponding author

Correspondence to Yunxia Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Zhiping Lai, Hongjun Lin and Sanchuan Yu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Molecular dynamics simulation of SDS absorption behaviours on the DMA-grafted PA and the pristine PA.

The distribution of SDS absorbed on the DMA-grafted PA and the pristine PA is illustrated with the top (a,b) and the side (c,d) views. The carboxyl groups of PAs are blue dots in the top view. The head groups of SDS are presented by yellow and red balls, and its tail groups are shown in green balls. Plots of the adsorption depth and the number of adsorbed SDS molecules on the DMA-grafted PA and the pristine PA (e). The adsorption energy between SDS and the PAs include LJ energy and Coul energy (f).

Extended Data Table 1 Water permeance of the pristine PA and DMA-grafted PA when fouled by DTAB and SDS and tested via molecular dynamics simulation

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–13 and Tables 1–15.

Supplementary Table 1

Source data of the multi-cycle fouling–recovery profiles of the fabricated RO membranes when fouled by SDS and DTAB, corresponding to Supplementary Fig. 9 and Supplementary Tables 12–15.

Supplementary Data 1

1. Source files of the PA molecular models and DTAB adsorption simulations, corresponding to Fig. 5. 2. Source files of the PA molecular models and SDS adsorption simulations, corresponding to Extended Data Fig. 1. 3. Source files of the water permeation simulations, corresponding to Fig. 6. 4. Source files of the SEM, TEM and AFM images of the fabricated RO membranes, corresponding to Fig. 2, Supplementary Figs. 4 and 5 and Supplementary Table 4.

Source data

Source Data Fig. 1

Source data of the high-resolution deconvolution peaks of C 1s, N 1s and O 1s from the RO membranes.

Source Data Fig. 2

Source files of the SEM images of the RO membranes.

Source Data Fig. 3

Source data of the normalized flux profiles.

Source Data Fig. 4

Source data of the QCM-D tests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Qi, P., Hao, S. et al. Methylation of reverse osmosis membrane for superior anti-fouling performance via blocking carboxyl groups in polyamide. Nat Water 3, 110–121 (2025). https://doi.org/10.1038/s44221-024-00371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00371-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing