Abstract
The continuous downscaling of silicon transistors has driven exponential improvements in computing performance and energy efficiency, but sub-10 nm channel lengths pose fundamental challenges in speed and power consumption. Emerging materials and architectures offer promising pathways for further miniaturization. Bismuth oxyselenide (Bi2O2Se), an air-stable 2D semiconductor, exhibits high mobility, a suitable bandgap and a native high-κ oxide (Bi2SeO5), resembling silicon and its SiO2 counterpart. These properties suggest compatibility with industrial processes, positioning Bi2O2Se for next-generation high-performance computing. This Review summarizes recent advances in material synthesis, wafer-scale integration and device architectures, highlighting key challenges in the lab-to-fab transition. Finally, a roadmap is proposed to guide future innovations in ultra-scaled, energy-efficient electronics.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Bardon, M. G. et al. DTCO including sustainability: power-performance-area-cost-environmental score (PPACE) analysis for logic technologies. IEEE IEDM 41.4.1–41.4.4 (2020).
Jones, S. W. Cost simulations to enable PPAC aware technology development. In International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) 215–218 (2021).
Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).
International Roadmap for Devices and Systems 2023 Edition, More Moore. https://irds.ieee.org/ (2023).
Lundstrom, M. Moore’s law forever? Science 299, 210–211 (2003).
Wu, S. Y. et al. A 3 nm CMOS FinFlex™ platform technology with enhanced power efficiency and performance for mobile SoC and high performance computing applications. IEEE IEDM 27.5.1–27.5.4 (2022).
International Roadmap for Devices and Systems 2022 Edition, More Moore. https://irds.ieee.org/ (2022).
Zeng, S., Liu, C. & Zhou, P. Transistor engineering based on 2D materials in the post-silicon era. Nat. Rev. Electr. Eng. 1, 335–348 (2024).
Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).
Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).
Uchida, K. et al. Experimental study on carrier transport mechanism in ultrathin-body SOI NAND p-MOSFETs with SOI thickness less than 5 nm. IEEE IEDM 47–50 (2002).
Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, aab2750 (2015).
Franklin, A. D., Hersam, M. C. & Wong, H.-S. P. Carbon nanotube transistors: making electronics from molecules. Science 378, 726–732 (2022).
Nomura, K. et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003).
Cao, W. et al. The future transistors. Nature 620, 501–515 (2023).
Jayachandran, D., Sakib, N. U. & Das, S. 3D integration of 2D electronics. Nat. Rev. Electr. Eng. 1, 300–316 (2024).
Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).
Jayachandran, D. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 625, 276–281 (2024).
Kang, J.-H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).
International Roadmap for Devices and Systems 2018 Edition, More Moore. https://irds.ieee.org/ (2018).
Wu, J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).
Li, T. et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 4, 731–739 (2020).
Zhang, Y. et al. A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm. Nat. Electron. 5, 643–649 (2022).
Illarionov, Y. Y., Knobloch, T. & Grasser, T. Native high-κ oxides for 2D transistors. Nat. Electron. 3, 442–443 (2020).
Chen, C. et al. Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se. Sci. Adv. 4, eaat8355 (2018).
Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).
Zhang, C. et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023).
Wang, J. et al. T-square resistivity without Umklapp scattering in dilute metallic Bi2O2Se. Nat. Commun. 11, 3846 (2020).
Wu, J. et al. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 17, 3021–3026 (2017).
Tan, C. et al. Wafer-scale growth of single-crystal 2D semiconductor on perovskite oxides for high-performance transistors. Nano Lett. 19, 2148–2153 (2019).
Kang, M. et al. Low-temperature and high-quality growth of Bi2O2Se layered semiconductors via cracking metal–organic chemical vapor deposition. ACS Nano 15, 8715–8723 (2021).
Kang, M. et al. Layer-controlled growth of single-crystalline 2D Bi2O2Se film driven by interfacial reconstruction. ACS Nano 18, 819–828 (2024).
Tan, C. et al. 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023).
Yu, M. et al. Integrated 2D multi-fin field-effect transistors. Nat. Commun. 15, 3622 (2024).
Yin, J. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 9, 3311 (2018).
Li, J. et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 28, 1706437 (2018).
Xu, S. et al. Exploiting two-dimensional Bi2O2Se for trace oxygen detection. Angew. Chem. Int. Edit. 59, 17938–17943 (2020).
Sirohi, A. & Singh, J. 2D Bi2O2Se based highly selective and sensitive toxic non-condensable gas sensor. IEEE Trans. Nanotechnol. 21, 794–800 (2022).
Xie, H. et al. Biodegradable Bi2O2Se quantum dots for photoacoustic imaging-guided cancer photothermal therapy. Small 16, e1905208 (2020).
Dennard, R. H. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circuit 9, 256–268 (1974).
Frank, D. J. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001).
Bohr, M. A 30 year retrospective on Dennard’s MOSFET scaling paper. IEEE SSCS Newsl. 12, 11–13 (2007).
De, V. & Borkar, S. Technology and design challenges for low power and high performance. In Proc. 1999 International Symposium on Low Power Electronics and Design 163–168 (1999).
Ferain, I., Colinge, C. A. & Colinge, J. P. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011).
Auth, C. P. & Plummer, J. D. Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s. IEEE Electron Device Lett. 18, 74–76 (1997).
Zhuo, F. et al. Modifying the power and performance of 2-dimensional MoS2 field effect transistors. Research 6, 0057 (2023).
James, D. High-k/metal gates in the 2010s. In 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) 431–438 (2014).
Duvvury, C. A guide to short-channel effects in MOSFETs. IEEE Circuits Devices 2, 6–10 (1986).
Das, R. R., Rajalekshmi, T. R. & James, A. FinFET to GAA MBCFET: a review and insights. IEEE Access 12, 50556–50577 (2024).
Jain, P. U. & Tomar, V. K. FinFET technology: as a promising alternatives for conventional MOSFET technology. In International Conference on Emerging Smart Computing and Informatics (ESCI) 43–47 (2020).
Theis, T. N. & Wong, H. S. P. The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19, 41–50 (2017).
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Jena, D. Tunneling transistors based on graphene and 2-D crystals. Proc. IEEE 101, 1585–1602 (2013).
Sakaki, H., Noda, T., Hirakawa, K., Tanaka, M. & Matsusue, T. Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 51, 1934–1936 (1987).
Wang, S., Liu, X. & Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 34, 2106886 (2022).
Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).
Chang, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 37, 2108017 (2021).
Kim, K. S. et al. The future of two-dimensional semiconductors beyond Moore’s law. Nat. Nanotechnol. 19, 895–906 (2024).
Penumatcha, A. et al. High mobility TMD NMOS and PMOS transistors and GAA architecture for ultimate CMOS scaling. IEEE IEDM 1–4 (2023).
Dorow, C. J. et al. Gate length scaling beyond Si: mono-layer 2D channel FETs robust to short channel effects. IEEE IEDM 7.5.1–7.5.4 (2022).
Schram, T., Sutar, S., Radu, I. & Asselberghs, I. Challenges of wafer-scale integration of 2D semiconductors for high-performance transistor circuits. Adv. Mater. 34, 2109796 (2022).
Smets, Q. et al. Extreme scaling enabled by MX2 transistors: variability challenges (invited). In Silicon Nanoelectronics Workshop (SNW) 1–2 (2021).
Li, M. Y. et al. Wafer-scale Bi-assisted semi-auto dry transfer and fabrication of high-performance monolayer CVD WS2 transistor. In IEEE Symposium on VLSI Technology and Circuits 290–291 (2022).
Hung, T. Y. T. et al. pMOSFET with CVD-grown 2D semiconductor channel enabled by ultra-thin and fab-compatible spacer doping. IEEE IEDM 7.3.1–7.3.4 (2022).
Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).
Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).
Liu, J., Xia, F., Xiao, D., Garcia de Abajo, F. J. & Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020).
Neumaier, D., Pindl, S. & Lemme, M. C. Integrating graphene into semiconductor fabrication lines. Nat. Mater. 18, 525–529 (2019).
Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).
Lin, X., Yang, W., Wang, K. L. & Zhao, W. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019).
Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015).
Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).
Huang, X., Liu, C. & Zhou, P. 2D semiconductors for specific electronic applications: from device to system. npj 2D Mater. Appl. 6, 51 (2022).
Rahman, A., Jing, G., Datta, S. & Lundstrom, M. S. Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50, 1853–1864 (2003).
Natori, K. Ballistic transistors entrance to nanoscale electronics. In Proc. 7th International Conference Solid-State and Integrated Circuits Technology, 1, 247–250 (2004).
Timp, G. et al. The ballistic nano-transistor. In International Electron Devices Meeting, Technical Digest (99CH36318) 55–58 (1999).
Natori, K. Ballistic metal–oxide–semiconductor field effect transistor. J. Appl. Phys. 76, 4879–4890 (1994).
Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).
Cao, W., Kang, J., Sarkar, D., Liu, W. & Banerjee, K. 2D semiconductor FETs — projections and design for sub-10 nm VLSI. IEEE Trans. Electron Devices 62, 3459–3469 (2015).
Agarwal, T. et al. Benchmarking of MoS2 FETs with multigate Si-FET options for 5 nm and beyond. IEEE Trans. Electron Devices 62, 4051–4056 (2015).
Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).
Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).
Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).
Li, S.-L. et al. Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett. 13, 3546–3552 (2013).
Yu, Z. et al. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 27, 1604093 (2017).
Xu, Y. et al. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater. 22, 1078–1084 (2023).
Lu, Z. et al. Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration. Nat. Commun. 14, 2340 (2023).
Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).
Xia, F., Wang, H., Hwang, J. C. M., Neto, A. H. C. & Yang, L. Black phosphorus and its isoelectronic materials. Nat. Rev. Phys. 1, 306–317 (2019).
Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).
Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
Yang, P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14, 5036–5045 (2020).
Liu, L. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368, 850–856 (2020).
Liang, Y. et al. Molecular beam epitaxy and electronic structure of atomically thin oxyselenide films. Adv. Mater. 31, 1901964 (2019).
Ding, X. et al. Bi2O2Se: a rising star for semiconductor devices. Matter 5, 4274–4314 (2022).
Li, T. & Peng, H. 2D Bi2O2Se: an emerging material platform for the next-generation electronic industry. Acc. Mater. Res. 2, 842–853 (2021).
Chen, W. et al. Preparation, properties, and electronic applications of 2D Bi2O2Se. Adv. Powder Mater. 2, 100080 (2023).
Wei, Q. et al. Quasi-two-dimensional Se-terminated bismuth oxychalcogenide (Bi2O2Se). ACS Nano 13, 13439–13444 (2019).
Zhou, X. et al. Step-climbing epitaxy of layered materials with giant out-of-plane lattice mismatch. Adv. Mater. 34, 2202754 (2022).
Zhao, K. et al. Bi2O2Se nanowires presenting high mobility and strong spin–orbit coupling. Appl. Phys. Lett. 121, 212104 (2022).
Meng, M. et al. Strong spin–orbit interaction and magnetotransport in semiconductor Bi2O2Se nanoplates. Nanoscale 10, 2704–2710 (2018).
Meng, M. et al. Universal conductance fluctuations and phase-coherent transport in a semiconductor Bi2O2Se nanoplate with strong spin–orbit interaction. Nanoscale 11, 10622–10628 (2019).
Wu, M. & Zeng, X. C. Bismuth oxychalcogenides: a new class of ferroelectric/ferroelastic materials with ultra high mobility. Nano Lett. 17, 6309–6314 (2017).
Wang, J. et al. Even-integer quantum Hall effect in an oxide caused by a hidden Rashba effect. Nat. Nanotechnol. 19, 1452–1459 (2024).
Tu, T. et al. Uniform high-k amorphous native oxide synthesized by oxygen plasma for top-gated transistors. Nano Lett. 20, 7469–7475 (2020).
Skotnicki, T. & Boeuf, F. How can high mobility channel materials boost or degrade performance in advanced CMOS. In IEEE Symposium on VLSI Technology and Circuits 153–154 (2010).
Koba, S. et al. Channel length scaling limits of III–V channel MOSFETs governed by source-drain direct tunneling. Jpn. J. Appl. Phys. 53, 04EC10 (2014).
Zhu, Z., Yao, X., Zhao, S., Lin, X. & Li, W. Giant modulation of the electron mobility in semiconductor Bi2O2Se via incipient ferroelectric phase transition. J. Am. Chem. Soc. 144, 4541–4549 (2022).
Quhe, R. et al. Sub-10 nm two-dimensional transistors: theory and experiment. Phys. Rep. 938, 1–72 (2021).
Quhe, R. et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale 11, 532–540 (2019).
Yu, M., Tan, C., Gao, X., Tang, J. & Peng, H. Chemical vapor deposition growth of high-mobility 2D semiconductor Bi2O2Se: controllability and material quality. Acta Phys. Chim. Sin. 39, 2306043 (2023).
Tan, C. W. et al. Strain-free layered semiconductors for 2D transistors with on-state current density exceeding 1.3 mA μm−1. Nano Lett. 22, 3770–3776 (2022).
Yang, X. et al. High mobility two-dimensional bismuth oxyselenide single crystals with large grain size grown by reverse-flow chemical vapor deposition. ACS Appl. Mater. Interfaces 13, 49153–49162 (2021).
Hong, C. et al. Inclined ultrathin Bi2O2Se films: a building block for functional van der Waals heterostructures. ACS Nano 14, 16803–16812 (2020).
Khan, U. et al. Controlled vapor–solid deposition of millimeter‐size single crystal 2D Bi2O2Se for high‐performance phototransistors. Adv. Funct. Mater. 29, 1807979 (2019).
Khan, U. et al. Salt-assisted low-temperature growth of 2D Bi2O2Se with controlled thickness for electronics. Small 19, 2206648 (2023).
Zhang, C. et al. High-mobility flexible oxyselenide thin-film transistors prepared by a solution-assisted method. J. Am. Chem. Soc. 142, 2726–2731 (2020).
Yang, J. et al. Exploration on the growth of Bi2O2Se films and nanosheet by an ALD-assisted CVD method. J. Mater. Sci. Mater. Electron. 34, 788 (2023).
Kim, T. S. et al. Gas-phase alkali metal-assisted MOCVD growth of 2D transition metal dichalcogenides for large-scale precise nucleation control. Small 18, 2106368 (2022).
Song, Y. et al. Epitaxial growth and characterization of high quality Bi2O2Se thin films on SrTiO3 substrates by pulsed laser deposition. Nanotechnology 31, 165704 (2020).
Dang, L.-Y. et al. Organic ion template-guided solution growth of ultrathin bismuth oxyselenide with tunable electronic properties for optoelectronic applications. Adv. Funct. Mater. 32, 2201020 (2022).
Li, M.-Q. et al. Bismuth oxychalcogenide nanosheet: facile synthesis, characterization, and photodetector application. Adv. Mater. Technol. 5, 2000180 (2020).
Fu, H., Wu, J., Peng, H. & Yan, B. Self-modulation doping effect in the high-mobility layered semiconductor Bi2O2Se. Phys. Rev. B 97, 241203 (2018).
Wu, J. et al. Low residual carrier concentration and high mobility in 2D semiconducting Bi2O2Se. Nano Lett. 19, 197–202 (2019).
Wang, T. et al. Highly insulating phase of Bi2O2Se thin films with high electronic performance. Nano Res. 16, 3224–3230 (2022).
Wei, Q. et al. Physics of intrinsic point defects in bismuth oxychalcogenides: a first-principles investigation. J. Appl. Phys. 124, 055701 (2018).
Li, H. et al. Native point defects of semiconducting layered Bi2O2Se. Sci. Rep. 8, 10920 (2018).
Wu, Z. et al. Seed-induced vertical growth of 2D Bi2O2Se nanoplates by chemical vapor transport. Adv. Funct. Mater. 29, 1906639 (2019).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).
Deng, B. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11, 12337–12345 (2017).
Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).
Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).
Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).
Atalla, M. M., Tannenbaum, E. & Scheibner, E. J. Stabilization of silicon surfaces by thermally grown oxides. Bell Syst. Tech. 38, 749–783 (1959).
Pillarisetty, R. Academic and industry research progress in germanium nanodevices. Nature 479, 324–328 (2011).
Zhang, H. et al. Programmable interfacial band configuration in WS2/Bi2O2Se heterojunctions. ACS Nano 18, 16832–16841 (2024).
Zhao, Y. et al. Scalable layer-controlled oxidation of Bi2O2Se for self-rectifying memristor arrays with sub-pA sneak currents. Adv. Mater. 36, 2406608 (2024).
Davoudi, M. R. et al. Multi-scale modeling of transistors based on the 2D semiconductor Bi2O2Se. In International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) 49–52 (2023).
Knobloch, T. et al. Modeling the performance and reliability of two-dimensional semiconductor transistors. IEEE IEDM 1–4 (2023).
Zhang, J. & Li, H. Bi2O2Se:Bi2O5Se high-K stack as a 2D analog of Si:SiO2: a first-principles study. Phys. Stat. Sol. Rapid Res. Lett. 15, 2000465 (2021).
Park, H. et al. Direct growth of Bi2SeO5 thin films for high-k dielectrics via atomic layer deposition. ACS Nano 18, 22071–22079 (2024).
Liu, L. N., Tang, W. M. & Lai, P. T. Advances in La-based high-k dielectrics for MOS applications. Coatings 9, 217 (2019).
Lu, C. A. et al. Characterizing and reducing the layout dependent effect and gate resistance to enable multiple-Vt scaling for a 3 nm CMOS technology. In IEEE Symposium on VLSI Technology and Circuits 1–2 (2023).
Razavieh, A., Zeitzoff, P. & Nowak, E. J. Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Trans. Nanotechnol. 18, 999–1004 (2019).
Sudarsanan, A., Venkateswarlu, S. & Nayak, K. Impact of fin line edge roughness and metal gate granularity on variability of 10-nm node SOI n-FinFET. IEEE Trans. Electron Devices 66, 4646–4652 (2019).
Liu, C.-C. et al. Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond. Nat. Electron. 1, 562–569 (2018).
Moroz, V. & Bomholt, L. Addressing LER through atomistic self-assembly. Proc. SPIE 8323, 83231Z (2012).
Mehrotra, S. R., Paul, A., Cho, J., Povolotskyi, M. & Klimeck, G. Effect of fin tapering in nanoscale Si FinFETs. In 16th International Workshop on Computational Electronics 182–183 (2013).
Mohsen, A., Harb, A., Deltimple, N. & Serhane, A. 28-nm UTBB FD-SOI vs. 22-nm tri-gate FinFET review: a designer guide — part I. Circuits Syst. 08, 93–110 (2017).
Kurniawan, E. D., Yang, H., Lin, C.-C. & Wu, Y.-C. Effect of fin shape of tapered FinFETs on the device performance in 5-nm node CMOS technology. Microelectron. Reliab. 83, 254–259 (2018).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).
Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).
Chung, Y. Y. et al. First demonstration of GAA monolayer-MoS2 nanosheet nFET with 410 μA μm ID 1 V VD at 40 nm gate length. IEEE IEDM 34.5.1–34.5.4 (2022).
Guo, Y. et al. van der Waals polarity-engineered 3D integration of 2D complementary logic. Nature 630, 346–352 (2024).
Bishop, M. D., Wong, H. S. P., Mitra, S. & Shulaker, M. M. Monolithic 3-D integration. IEEE Micro 39, 16–27 (2019).
Lu, J.-Q. 3-D hyperintegration and packaging technologies for micro–nano systems. Proc. IEEE 97, 18–30 (2009).
Kim, K. H., Karpov, I., Olsson, R. H., Olsson, I. I. I. & Jariwala, D. Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18, 422–441 (2023).
Jiang, J., Parto, K., Cao, W. & Banerjee, K. Monolithic-3D integration with 2D materials: toward ultimate vertically-scaled 3D-ICs. IEEE S3S 1–3 (2018).
Jiang, J., Parto, K., Cao, W. & Banerjee, K. Ultimate monolithic-3D integration with 2D materials: rationale, prospects, and challenges. IEEE J. Electron Devices Soc. 7, 878–887 (2019).
Chen, Y. et al. Broadband Bi2O2Se photodetectors from infrared to terahertz. Adv. Funct. Mater. 31, 2009554 (2021).
Chen, Y. F. et al. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection. Sci. Adv. 8, eabq1781 (2022).
Wei, Y. et al. High-performance visible to near-infrared broadband Bi2O2Se nanoribbon photodetectors. Adv. Opt. Mater. 10, 2201396 (2022).
Fu, Q. et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv. Mater. 31, 1804945 (2019).
Fan, S. et al. Out-of-plane Bi2O2Se nanoflakes for sensitive gate-tunable phototransistors. Adv. Opt. Mater. 11, 2300740 (2023).
Chitara, B., Limbu, T. B., Orlando, J. D., Vinodgopal, K. & Yan, F. 2-D Bi2O2Se nanosheets for nonenzymatic electrochemical detection of H2O2. IEEE Sens. Lett. 4, 1–4 (2020).
Bae, J. K. et al. One-step synthesis of Bi2O2Se microstructures for trace oxygen gas sensor application. Sens. Actuator B Chem. 394, 134398 (2023).
Cai, Q. et al. Sub-10 mK-resolution thermal-bolometric integrated FET-type sensors based on layered Bi2O2Se semiconductor nanosheets. IEEE IEDM 26.1.1–26.1.4 (2020).
Wang, W. et al. Electrically switchable polarization in Bi2O2Se ferroelectric semiconductors. Adv. Mater. 35, 2210854 (2023).
Ghosh, T. et al. Ultrathin free-standing nanosheets of Bi2O2Se: room temperature ferroelectricity in self-assembled charged layered heterostructure. Nano Lett. 19, 5703–5709 (2019).
Wang, Z. et al. An ultrasensitive plasmonic sensor based on 2D ferroelectric Bi2O2Se. Small 19, 2303026 (2023).
Sun, Y. et al. Intelligent cardiovascular disease diagnosis system combined piezoelectric nanogenerator based on 2D Bi2O2Se with deep learning technique. Nano Energy 128, 109878 (2024).
Zhang, Z. et al. Truly concomitant and independently expressed short- and long-term plasticity in a Bi2O2Se-based three-terminal memristor. Adv. Mater. 31, 1805769 (2019).
Liu, B. et al. Bi2O2Se-based true random number generator for security applications. ACS Nano 16, 6847–6857 (2022).
Liu, B. et al. Bi2O2Se-based memristor-aided logic. ACS Appl. Mater. Interfaces 13, 15391–15398 (2021).
Xia, Y. et al. 2D heterostructure of Bi2O2Se/Bi2SeOx nanosheet for resistive random access memory. Adv. Electron. Mater. 8, 2200126 (2022).
Dong, Z. et al. Ultrafast and low-power 2D Bi2O2Se memristors for neuromorphic computing applications. Nano Lett. 23, 3842–3850 (2023).
Verma, D., Chen, T.-C., Liu, B. & Lai, C.-S. Bi2O2Se-based CBRAM integrated artificial synapse. Heliyon 9, e22512 (2023).
Wu, M. et al. Achieving ferroelectricity in a centrosymmetric high-performance semiconductor by strain engineering. Adv. Mater. 35, 2300450 (2023).
Wu, P., Zhang, T., Zhu, J., Palacios, T. & Kong, J. 2D materials for logic device scaling. Nat. Mater. 23, 23–25 (2024).
Jing, H. M. et al. Formation of Ruddlesden–Popper faults and their effect on the magnetic properties in Pr0.5Sr0.5CoO3 thin films. ACS Appl. Mater. Interfaces 10, 1428–1433 (2018).
Thind, A. S. et al. Atomic structure and electrical activity of grain boundaries and Ruddlesden–Popper faults in cesium lead bromide perovskite. Adv. Mater. 31, e1805047 (2018).
Wang, W. Y. et al. Atomic mapping of Ruddlesden–Popper faults in transparent conducting BaSnO3-based thin films. Sci. Rep. 5, 16097 (2015).
Chen, W. et al. High-fidelity transfer of 2D Bi2O2Se and its mechanical properties. Adv. Funct. Mater. 30, 2004960 (2020).
Wang, G. et al. Tunable contacts of Bi2O2Se nanosheets MSM photodetectors by metal‐assisted transfer approach for self‐powered near‐infrared photodetection. Small 20, 2306363 (2023).
Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).
Liu, G. et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat. Electron. 5, 275–280 (2022).
Panasci, S. E., Schilirò, E., Roccaforte, F. & Giannazzo, F. Gold-assisted exfoliation of large-area monolayer transition metal dichalcogenides: from interface properties to device applications. Adv. Funct. Mater. 35, 2414532 (2024).
Chou, A. S. et al. High-performance monolayer WSe2 p/n FETs via antimony–platinum modulated contact technology towards 2D CMOS electronics. IEEE IEDM 7.2.1–7.2.4 (2022).
Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).
Jiang, J. et al. Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors. Nat. Electron. 7, 545–556 (2024).
Ting, C. Y. Silicide for contacts and interconnects. IEEE IEDM 110–113 (1984).
Chuang, S. et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014).
Meyer, J., Zilberberg, K., Riedl, T. & Kahn, A. Electronic structure of vanadium pentoxide: an efficient hole injector for organic electronic materials. J. Appl. Phys. 110, 033710 (2011).
Gottesman, R. et al. Pure CuBi2O4 photoelectrodes with increased stability by rapid thermal processing of Bi2O3/CuO grown by pulsed laser deposition. Adv. Funct. Mater. 30, 1910832 (2020).
Oropeza, F. E. et al. Electronic structure and interface energetics of CuBi2O4 photoelectrodes. J. Phys. Chem. C 124, 22416–22425 (2020).
Li, J. et al. Chemical vapor deposition of quaternary 2D BiCuSeO p-type semiconductor with intrinsic degeneracy. Adv. Mater. 34, 2207796 (2022).
Toriyama, M. Y., Qu, J., Snyder, G. J. & Gorai, P. Defect chemistry and doping of BiCuSeO. J. Mater. Chem. A 9, 20685–20694 (2021).
Schor, D. TSMC N3, and challenges ahead. https://fuse.wikichip.org/ (2023).
Lin, Y. et al. Scaling aligned carbon nanotube transistors to a sub-10 nm node. Nat. Electron. 6, 506–515 (2023).
Lu, Y.-C., Huang, J.-K., Chao, K.-Y., Li, L.-J. & Hu, V. P.-H. Projected performance of Si- and 2D-material-based SRAM circuits ranging from 16 nm to 1 nm technology nodes. Nat. Nanotechnol. 19, 1066–1072 (2024).
Li, H. et al. Recent experimental breakthroughs on 2D transistors: approaching the theoretical limit. Adv. Funct. Mater. 34, 2402474 (2024).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (22432001 to H.P., 21920102004 to H.P., 22205011 to C.T. and 92164205 to C.T.), National Key Research & Development Program (2022YFA1204900 to H.P. and 2021YFA1202901 to C.T.), Beijing National Laboratory for Molecular Sciences (BNLMS-CXTD-202001 to H.P.) and the Tencent Foundation (The XPLORER PRIZE to H.P.).
Author information
Authors and Affiliations
Contributions
H.P. and C.T. provided innovative ideas for the article. C.T. researched data for this article. C.T., J.T., X.G. and H.P. co-wrote the manuscript. All authors provided suggestions for revisions and improvements to the Review.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tan, C., Tang, J., Gao, X. et al. 2D bismuth oxyselenide semiconductor for future electronics. Nat Rev Electr Eng (2025). https://doi.org/10.1038/s44287-025-00179-1
Accepted:
Published:
DOI: https://doi.org/10.1038/s44287-025-00179-1