Facile modification of a porous superhydrophobic polytetrafluoroethylene foam produced suitable surface structures to enable fluid slip flow and resist protein fouling. Its monolithic nature offered abrasion durability, while its porosity allowed pressurized air to be supplied to resist fluid impalement and to replenish the air plastron lost to the fluid. Active pore pressure control could resist high fluid pressures and turbulent flow conditions across a wide range of applied pressures. The pneumatically stabilized material yielded large drag reductions even with protein fouling. Coupled with its high hemocompatibility, this easily fabricated material can be viable for incorporation into blood-contacting medical devices.
- Jennifer Marlena
- Justin Kok Soon Tan
- Choon Hwai Yap