Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 194 results
Advanced filters: Author: Daniel D Buchanan Clear advanced filters
  • Altered mechanotransduction has been proposed as a mechanism for disease pathophysiology, yet evidence remains scarce. Here, the authors show that antibodies from patients with bleeding disorders bind to integrins and modulate platelet cell contraction force, and this correlates with clinical symptoms.

    • Oluwamayokun Oshinowo
    • Renee Copeland
    • David R. Myers
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • The Connectome Annotation Versioning Engine (CAVE) is a platform for proofreading, annotating and analyzing datasets reaching the petascale. Currently, CAVE is used for electron microscopy datasets, but it can potentially be used for other large-scale datasets.

    • Sven Dorkenwald
    • Casey M. Schneider-Mizell
    • Forrest Collman
    ResearchOpen Access
    Nature Methods
    Volume: 22, P: 1112-1120
  • Neural Decomposition (NEURD) is a software package that decomposes neuronal data from high-resolution electron microscopy volumes into feature-rich graph representations to facilitate analysis for neuroscience research.

    • Brendan Celii
    • Stelios Papadopoulos
    • Jacob Reimer
    ResearchOpen Access
    Nature
    Volume: 640, P: 487-496
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Using volumetric electron microscopy, the authors map and analyze the structure of cortical inhibition with synaptic resolution across a column of visual cortex.

    • Casey M. Schneider-Mizell
    • Agnes L. Bodor
    • Nuno Maçarico da Costa
    ResearchOpen Access
    Nature
    Volume: 640, P: 448-458
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • The MICrONS mouse visual cortex dataset shows that neurons with similar response properties preferentially connect, a pattern that emerges within and across brain areas and layers, and independently emerges in artificial neural networks where these ‘like-to-like’ connections prove important for task performance.

    • Zhuokun Ding
    • Paul G. Fahey
    • Andreas S. Tolias
    ResearchOpen Access
    Nature
    Volume: 640, P: 459-469
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Dense calcium imaging combined with co-registered high-resolution electron microscopy reconstruction of the brain of the same mouse provide a functional connectomics map of tens of thousands of neurons of a region of the primary cortex and higher visual areas.

    • J. Alexander Bae
    • Mahaly Baptiste
    • Chi Zhang
    ResearchOpen Access
    Nature
    Volume: 640, P: 435-447
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Excitatory neurons in the neocortex exhibit considerable morphological diversity, yet their organizational principles remain a subject of ongoing research. Here, the authors use unsupervised learning to show that most excitatory neuron morphologies in the mouse visual cortex form a continuum, with notable exceptions in deeper layers.

    • Marissa A. Weis
    • Stelios Papadopoulos
    • Alexander S. Ecker
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Some cancer patients first present with metastases where the ___location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A meta-analysis of genome-wide association studies of type 2 diabetes (T2D) identifies more than 600 T2D-associated loci; integrating physiological trait and single-cell chromatin accessibility data at these loci sheds light on heterogeneity within the T2D phenotype.

    • Ken Suzuki
    • Konstantinos Hatzikotoulas
    • Eleftheria Zeggini
    ResearchOpen Access
    Nature
    Volume: 627, P: 347-357
  • Germline biallelic pathogenic MUTYH variants predispose patients to colorectal cancer (CRC); however, approaches to identify MUTYH variant carriers are lacking. Here, the authors evaluated mutational signatures that could distinguish MUTYH carriers in large CRC cohorts, and found MUTYH-associated somatic mutations.

    • Peter Georgeson
    • Tabitha A. Harrison
    • Daniel D. Buchanan
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-12
  • PELO–HBS1L and SKI complexes in the human mRNA quality control pathway exhibit a synthetic lethal interaction and may represent novel targets for the development of cancer therapies.

    • Vivian Prindle
    • Adam E. Richardson
    • Joshua P. Plotnik
    ResearchOpen Access
    Nature
    Volume: 638, P: 1095-1103
  • A comprehensive single-cell RNA sequencing study delineates cell-type-specific transcriptomic changes in the brain associated with normal ageing that will inform the investigation into functional changes and the interaction of ageing and disease.

    • Kelly Jin
    • Zizhen Yao
    • Hongkui Zeng
    ResearchOpen Access
    Nature
    Volume: 638, P: 182-196
  • Here, the authors perform large trans-ancestry fine-mapping analyses identifying large numbers of association signals and putative target genes for colorectal cancer risk, advancing our understanding of the genetic and biological basis of this cancer.

    • Zhishan Chen
    • Xingyi Guo
    • Wei Zheng
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-17
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Durable agonism of NPR1 achieved with a novel investigational monoclonal antibody could mirror the positive hemodynamic changes in blood pressure and heart failure identified in humans with lifelong exposure to NPR1 coding variants.

    • Michael E. Dunn
    • Aaron Kithcart
    • Lori Morton
    ResearchOpen Access
    Nature
    Volume: 633, P: 654-661
  • Similarities in cancers can be studied to interrogate their etiology. Here, the authors use genome-wide association study summary statistics from six cancer types based on 296,215 cases and 301,319 controls of European ancestry, showing that solid tumours arising from different tissues share a degree of common germline genetic basis.

    • Xia Jiang
    • Hilary K. Finucane
    • Sara Lindström
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-23