Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genome-wide association analysis reveals new pathogenic pathways in gout

A Publisher Correction to this article was published on 05 November 2024

This article has been updated

Abstract

Gout is a chronic disease that is caused by an innate immune response to deposited monosodium urate crystals in the setting of hyperuricemia. Here, we provide insights into the molecular mechanism of the poorly understood inflammatory component of gout from a genome-wide association study (GWAS) of 2.6 million people, including 120,295 people with prevalent gout. We detected 377 loci and 410 genetically independent signals (149 previously unreported loci in urate and gout). An additional 65 loci with signals in urate (from a GWAS of 630,117 individuals) but not gout were identified. A prioritization scheme identified candidate genes in the inflammatory process of gout, including genes involved in epigenetic remodeling, cell osmolarity and regulation of NOD-like receptor protein 3 (NLRP3) inflammasome activity. Mendelian randomization analysis provided evidence for a causal role of clonal hematopoiesis of indeterminate potential in gout. Our study identifies candidate genes and molecular processes in the inflammatory pathogenesis of gout suitable for follow-up studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gout associates with 377 genetic loci, representing 410 independent signals, across the ancestry-specific and trans-ancestry analyses.
Fig. 2: Association of PRS with gout in European participants of the UK Biobank in combined sexes (7,131 cases, 325,239 controls; left), men (6,584 cases, 152,777 controls; middle) and women (547 cases, 172,462 controls; right).
Fig. 3: Genetic correlation between the European gout GWAS and 934 UK Biobank GWAS traits.
Fig. 4
Fig. 5: Genes prioritized for a role in gouty inflammation.

Similar content being viewed by others

Data availability

The full GWAS summary statistics for the 23andMe discovery dataset will be made available through 23andMe to qualified researchers under an agreement with 23andMe that protects the privacy of the 23andMe participants. Datasets will be made available at no cost for academic use (https://research.23andme.com/collaborate/#dataset-access/). Supplementary Table 40 contains summary statistics from 9,980 independently associated SNPs. For the full European GWAS, we took all SNPs at P < 1 × 10−4 and used the UK Biobank as the LD reference to clump at R2 < 0.01 within windows of 5 Mb from each lead SNP. This resulted in 2,480 SNPs. For each of the African, East Asian and Latinx GWAS, we removed the SLC2A9 and ABCG2 regions (chr4:9.32 Mb–11.21 Mb and chr4:86.79 Mb–90.23 Mb, respectively) and then took the 2,500 most significant remaining SNPs for each. Summary statistics from meta-analyses without the 23andMe dataset (the four ancestries, each for men only, women only and combined sexes) are available at the GWAS Catalog (https://www.ebi.ac.uk, dataset accessions GCST90428594–GCST90428605; https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90428001-GCST90429000). The 1000 Genomes Project Phase 3 data were downloaded from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/; information on the UK Biobank cohort can be viewed at https://www.ukbiobank.ac.uk/; the GWAS Catalog is available at https://www.ebi.ac.uk/gwas/; GTEx data were downloaded from https://gtexportal.org/home/datasets; variant information from dbSNP was downloaded from https://ftp.ncbi.nih.gov/snp/latest_release/VCF/GCF_000001405.25.gz; conversion-unstable positions used for SLALOM were downloaded from https://github.com/cathaloruaidh/genomeBuildConversion; GoDMC meQTL data were downloaded from http://mqtldb.godmc.org.uk/downloads; RELI transcription factor ChIP–seq data were from https://tf.cchmc.org/external/RELI/RELI_public_data.tar.bz2; baseline LD score version 1.1, cell type-specific and cell type group annotations were downloaded from https://alkesgroup.broadinstitute.org/LDSCORE/; functional annotations for PAINTOR were downloaded from https://ucla.box.com/s/x47apvgv51au1rlmuat8m4zdjhcniv2d; LDSC summary statistics of UK Biobank traits from the round 2 analysis were downloaded from https://nealelab.github.io/UKBB_ldsc/downloads.html; ABC enhancer–gene connection data were downloaded from ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz; FATHMM scores for noncoding variants were obtained from http://fathmm.biocompute.org.uk/; ImmuNexUT eQTL data were downloaded from https://humandbs.biosciencedbc.jp/en/hum0214-v6; OneK1K eQTL data were downloaded from https://onek1k.s3.ap-southeast-2.amazonaws.com/onek1k_eqtl_dataset.zip; CHIP summary statistics were downloaded from https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90102001-GCST90103000/; the Susztak Kidney Biobank is available at https://susztaklab.com/; a list of differentially expressed genes in stimulated monocytes can be obtained from Table S2 in the original paper128; GWAS data for white blood cell traits used in the gene prioritization analysis are available at https://www.ebi.ac.uk/gwas/; FANTOM5 TSS data were downloaded from https://fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/TSS_classifier/; HaploReg is available at https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php; GeneHancer tracks were accessed through USCS; KEGG, Reactome and GO pathway analyses were conducted at https://david.ncifcrf.gov/; and transcription factor-binding site enrichment was carried out at https://maayanlab.cloud/Enrichr/.

Code availability

Code for the main analyses is available at https://github.com/MerrimanLab/Gout_GWAS_Code, permanently deposited at Zenodo (https://doi.org/10.5281/zenodo.13350995)129.

Change history

References

  1. Kuo, C. F. et al. Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 11, 649–662 (2015).

    Article  PubMed  Google Scholar 

  2. Safiri, S. et al. Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Arthritis Rheumatol. 72, 1916–1927 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Zhu, Y. et al. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. Am. J. Med. 125, 679–687 (2012).

    Article  PubMed  Google Scholar 

  4. Dalbeth, N. et al. Gout. Lancet 388, 2039–2052 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Martinon, F. et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Cabău, G. et al. Urate‐induced immune programming: consequences for gouty arthritis and hyperuricemia. Immunol. Rev. 294, 92–105 (2020).

    Article  PubMed  Google Scholar 

  7. Tin, A. et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat. Genet. 51, 1459–1474 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakayama, A. et al. Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients. Ann. Rheum. Dis. 79, 657–665 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Li, C. et al. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat. Commun. 6, 7041 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Sulem, P. et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat. Genet. 43, 1127–1130 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dalbeth, N. et al. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann. Rheum. Dis. 77, 1048–1052 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Dalbeth, N. et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann. Rheum. Dis. 74, 908–911 (2015).

    Article  PubMed  Google Scholar 

  14. Major, T. J. et al. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 14, 341–353 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Yang, Q. O. et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ. Cardiovasc. Genet. 3, 523–530 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kanai, M. et al. Meta-analysis fine-mapping is often miscalibrated at single-variant resolution. Cell Genom. 12, 100210 (2022).

    Article  Google Scholar 

  20. Yuan, S. et al. Genetically predicted sex hormone levels and health outcomes: phenome-wide Mendelian randomization investigation. Int. J. Epidemiol. 51, 1931–1942 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 30, 1521–1534 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Qiu, C. et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakayama, A. et al. Common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout, but not with all gout susceptibility. Hum. Cell 26, 133–136 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahmed, M. et al. Accelerated transcription of PRPS1 in X-linked overactivity of normal human phosphoribosylpyrophosphate synthetase.J. Biol. Chem. 274, 7284–7488 (1999).

    Article  Google Scholar 

  26. Halperin Kuhns, V. L. et al. Differential expression of renal urate transporters in male and female mice. FASEB J. 34, S1 (2020).

    Article  Google Scholar 

  27. Badii, M. et al. Urate-induced epigenetic modifications in myeloid cells. Arthritis Res. Ther. 23, 202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Z. et al. Differential DNA methylation of networked signaling, transcriptional, innate and adaptive immunity, and osteoclastogenesis genes and pathways in gout. Arthritis Rheumatol. 72, 802–814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet. 53, 1311–1321 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sakaue, S. & Okada, Y. GREP: genome for REPositioning drugs. Bioinformatics 35, 3821–3823 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Agrawal, A. et al. TET2-mutant clonal hematopoiesis and risk of gout. Blood 140, 1094–1103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 612, 301–309 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet. 51, 138–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gazal, S. et al. Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity. Nat. Genet. 54, 827–836 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Legrand-Poels, S. et al. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem. Pharmacol. 92, 131–141 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Chu, X. et al. Integration of metabolomics, genomics, and immune phenotypes reveals the causal roles of metabolites in disease. Genome Biol. 22, 198 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sibbons, C. M. et al. Polyunsaturated fatty acid biosynthesis involving Δ8 desaturation and differential DNA methylation of FADS2 regulates proliferation of human peripheral blood mononuclear cells. Front. Immunol. 9, 432 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gotfryd, K. et al. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat. Commun. 9, 4749 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Compan, V. et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37, 487–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Chirayath, T. et al. The inflammation induced by monosodium urate and calcium pyrophosphate crystals depends on osmolarity and aquaporin channels. Arthritis Rheumatol. 74, S9 (2022).

    Google Scholar 

  43. Pearson, D. L. et al. Neonatal pulmonary hypertension: urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N. Engl. J. Med. 344, 1832–1838 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Riksen, N. P. & Netea, M. G. Immunometabolic control of trained immunity. Mol. Asp. Med. 77, 100897 (2021).

    Article  CAS  Google Scholar 

  46. Segovia, M. et al. Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing inflammasome activation. Cancer Cell 35, 767–781 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo, C. et al. Cholesterol homeostatic regulator SCAP–SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages. Immunity 49, 842–856 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Yan, R. et al. A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols. Science 371, eabb2224 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, H. et al. Role of NINJ1 in gout flare and potential as a drug target. J. Inflamm. Res. 15, 5611–5620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sehgal, A., Irvine, K. M. & Hume, D. A. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis and tissue repair. Semin. Immunol. 54, 101509 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Hwang, J.-Y. & Zukin, R. S. REST, a master transcriptional factor in neurodegenerative disease. Curr. Opin. Neurobiol. 48, 193–200 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ji, A. et al. Novel genetic loci in early-onset gout derived from whole-genome sequencing of an adolescent gout cohort. Arthritis Rheumatol. https://doi.org/10.1002/art.42969 (2024).

  53. Chang, W.-C. et al. Genetic variants of PPAR-γ coactivator 1B augment NLRP3-mediated inflammation in gouty arthritis. Rheumatology 56, 457–466 (2017).

    CAS  PubMed  Google Scholar 

  54. Castel, S. E. et al. A vast resource of allelic expression data spanning human tissues. Genome Biol. 21, 234 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shang, K. et al. IL-33 ameliorates the development of MSU-induced inflammation through expanding MDSCs-like cells. Front. Endocrinol. 10, 36 (2019).

    Article  Google Scholar 

  56. Cadzow, M. et al. Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank. Arthritis Res. Ther. 19, 181 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dalbeth, N. et al. Survey definitions of gout for epidemiologic studies: comparison with crystal identification as the gold standard.Arthritis Care Res. 68, 1894–1898 (2016).

    Article  CAS  Google Scholar 

  58. He, B. et al. Hypercholesterolemia risk associated Abca6 does not regulate lipoprotein metabolism in mice or hamster. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866, 159006 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Basseville, A. et al. Histone deacetylase inhibitors influence chemotherapy transport by modulating expression and trafficking of a common polymorphic variant of the ABCG2 efflux transporter. Cancer Res. 72, 3642–3651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsuo, H. et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci. Transl. Med. 1, 5ra11 (2009).

    Article  PubMed  Google Scholar 

  61. Wallace, M. C. et al. Association between ABCG2 rs2231142 and poor response to allopurinol: replication and meta-analysis. Rheumatology 57, 656–660 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Takeshita, T. et al. The contribution of polymorphism in the alcohol dehydrogenase β subunit to alcohol sensitivity in a Japanese population. Hum. Genet. 97, 409–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Farrés, J. et al. Effects of changing glutamate 487 to lysine in rat and human liver mitochondrial aldehyde dehydrogenase. A model to study human (Oriental type) class 2 aldehyde dehydrogenase. J. Biol. Chem. 269, 13854–13860 (1994).

    Article  PubMed  Google Scholar 

  64. Yamanaka, H. et al. Analysis of the genotypes for aldehyde dehydrogenase 2 in Japanese patients with primary gout. Adv. Exp. Med. Biol. 370, 53–56 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Rees, M. et al. Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk. Diabetologia 55, 114–122 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Xiang, Z. et al. Pharmacological characterization of 40 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists and the agouti-related protein (AGRP) antagonist. Biochemistry 45, 7277–7288 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Pirazzi, C. et al. Patatin-like phospholipase ___domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. J. Hepatol. 57, 1276–1282 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Allenspach, E. J. et al. The autoimmune risk R262W variant of the adaptor SH2B3 improves survival in sepsis. J. Immunol. 207, 2710–2719 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, W. et al. LNK/SH2B3 loss of function promotes atherosclerosis and thrombosis. Circ. Res. 119, e91–e103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chiba, T. et al. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol. 67, 281–287 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Jutabha, P. et al. Functional analysis of human sodium–phosphate transporter 4 (NPT4/SLC17A3) polymorphisms. J. Pharmacol. Sci. 115, 249–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Matsuo, H. et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 83, 744–751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hurba, O. et al. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout. PLoS ONE 9, e107902 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hall, S. C. et al. Critical role of zinc transporter (ZIP8) in myeloid innate immune cell function and the host response against bacterial pneumonia. J. Immunol. 207, 1357–1370 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Fujishiro, H. et al. Effects of individual amino acid mutations of zinc transporter ZIP8 on manganese- and cadmium-transporting activity. Biochem. Biophys. Res. Commun. 616, 26–32 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Türkmen, D. et al. Statin treatment effectiveness and the SLCO1B1*5 reduced function genotype: long‐term outcomes in women and men. Br. J. Clin. Pharmacol. 88, 3230–3240 (2022).

    Article  PubMed  Google Scholar 

  77. Zhao, B. et al. Identification of potential megalin/cubilin substrates using extensive proteomics quantification from kidney megalin-knockdown mice. AAPS J. 24, 109 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Simonson, B. et al. DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress. Sci. Signal. 10, eaaf5967 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Scoville, D. W. & Jetten, A. M. GLIS3: a critical transcription factor in islet β-cell generation. Cells 10, 3471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Adelmann, C. H. et al. MFSD12 mediates the import of cysteine into melanosomes and lysosomes. Nature 588, 699–704 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ge, W. et al. POM121 inhibits the macrophage inflammatory response by impacting NF-κB P65 nuclear accumulation. Exp. Cell Res. 377, 17–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Moon, J.-S. et al. ANT2 drives proinflammatory macrophage activation in obesity. JCI Insight 6, e147033 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ghossoub, R. et al. Tetraspanin-6 negatively regulates exosome production. Proc. Natl Acad. Sci. USA 117, 5913–5922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bhatt-Wessel, B. et al. Role of DGAT enzymes in triacylglycerol metabolism. Arch. Biochem. Biophys. 655, 1–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Inoue, H. et al. γ-SNAP stimulates disassembly of endosomal SNARE complexes and regulates endocytic trafficking pathways. J. Cell Sci. 128, 2781–2794 (2015).

    CAS  PubMed  Google Scholar 

  86. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mackenzie, I. S. et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet 396, 1745–1757 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Kvale, M. N. et al. Genotyping informatics and quality control for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics 200, 1051–1060 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Toyoda, Y. et al. SNP-based heritability estimates of gout and its subtypes determined by genome-wide association studies of clinically defined gout. Rheumatol. 62, e144–e146 (2023).

    Article  Google Scholar 

  90. Köttgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).

    Article  PubMed  Google Scholar 

  91. Lindström, S. et al. A comprehensive survey of genetic variation in 20,691 subjects from four large cohorts. PLoS ONE 12, e0173997 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Boutin, N. T. et al. The evolution of a large biobank at Mass General Brigham. J. Pers. Med. 12, 1323 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shin, J. et al. Genetic architecture for susceptibility to gout in the KARE cohort study. J. Hum. Genet. 57, 379–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Neogi, T. et al. 2015 gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheumatol. 67, 2557–2568 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 6, e1000993 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Walter, K. et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  100. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Deng, J.-E. et al. SNPTracker: a swift tool for comprehensive tracking and unifying dbSNP rs IDs and genomic coordinates of massive sequence variants. G3 6, 205–207 (2016).

    Article  Google Scholar 

  104. Broad Institute GitHub Repository. Picard Toolkit broadinstitute.github.io/picard/ (2019).

  105. Willer, C. J. et al. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morris, A. P. Transethnic meta‐analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comp. Biol. 9, e1003118 (2013).

    Article  CAS  Google Scholar 

  108. Wang, X. et al. Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies. Hum. Mol. Genet. 22, 2303–2311 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Major, T. J. & Takei, R. LocusZoom-like plots for GWAS results (v2.1). Zenodo https://doi.org/10.5281/zenodo.5154379 (2021).

  111. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. de Leeuw et al. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comp. Biol. 11, e1004219 (2015).

    Article  Google Scholar 

  113. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ormond, C. et al. Converting single nucleotide variants between genome builds: from cautionary tale to solution. Brief. Bioinform. 22, bbab069 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chen, W. et al. Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors. Nat. Commun. 12, 7117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Pirinen, M. GWAS 3: Statistical Power www.mv.helsinki.fi/home/mjxpirin/GWAS_course/material/GWAS3.html (2023).

  125. Boocock, J. et al. Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Hum. Mol. Genet. 29, 923–943 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Fadason, T. et al. Physical interactions and expression quantitative traits loci identify regulatory connections for obesity and type 2 diabetes associated SNPs. Front. Genet. 8, 150 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Harley, J. B. et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 50, 699–707 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. rikutakei. MerrimanLab/Gout_GWAS_Code: Gout_GWAS_code. Zenodo https://doi.org/10.5281/zenodo.13350995 (2024).

Download references

Acknowledgements

This article is dedicated to Philip C. Robinson. We thank the research participants and employees of 23andMe for making this work possible. The following members of the 23andMe Research Team contributed to this study: S. Aslibekyan, A. Auton, E. Babalola, R.K. Bell, J. Bielenberg, K. Bryc, E. Bullis, D. Coker, G. Cuellar Partida, D. Dhamija, S. Das, S.L. Elson, N. Eriksson, T. Filshtein, A. Fitch, K. Fletez-Brant, P. Fontanillas, W. Freyman, J.M. Granka, K. Heilbron, A. Hernandez, B. Hicks, D.A. Hinds, E.M. Jewett, Y. Jiang, K. Kukar, A. Kwong, K.-H. Lin, B.A. Llamas, M. Lowe, J.C. McCreight, M.H. McIntyre, S.J. Micheletti, M.E. Moreno, P. Nandakumar, D.T. Nguyen, E.S. Noblin, J. O’Connell, A.A. Petrakovitz, G.D. Poznik, A. Reynoso, M. Schumacher, A.J. Shastri, J.F. Shelton, J. Shi, S. Shringarpure, Q.J. Su, S.A. Tat, C.T. Tchakouté, V. Tran, J.Y. Tung, X. Wang, W.W., C.H. Weldon, P. Wilton and C.D. Wong. We thank the participants and staff of the UK Biobank study for their important contribution. This research has been conducted using the UK Biobank resource under application number 12611. We acknowledge the participants and investigators of the FinnGen study. The GTEx Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health and by the NCI, the NHGRI, the NHLBI, the NIDA, the NIMH and the NINDS. This study was supported by grants from the Health Research Council of New Zealand to T.R.M. (08/075, 11/1075, 14/527), Arthritis New Zealand to T.R.M., Lottery Health New Zealand to T.R.M., JSPS KAKENHI (grant numbers 20H00566, 21KK0173, 17H04128, 22H00476, 20K23152, 21H03350, 17015018, 221S0001, 2221S0002, 16H06279 (PAGS), 16H06277, 22H04923 (CoBiA), 20H00568), AMED (JP21gm4010006, JP22km0405211, JP22ek0410075, JP22km0405217, JP22ek0109594), JST Moonshot R&D (JPMJMS2021, JPMJMS2024), the Takeda Science Foundation, the Bioinformatics Initiative of Osaka University Graduate School of Medicine, the Gout and Uric Acid Foundation of Japan and the Ministry of Defense of Japan, the National Natural Science Foundation of China (82220108015) and the National Key Research and Development Program of China (2022YFE0107600, 2022YFC2503300). Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006) and is currently supported by the Wellcome Trust (216767/Z/19/Z). Genotyping of the GS:SFHS samples was funded by the Medical Research Council UK, the Wellcome Trust (Wellcome Trust Strategic Award ‘Stratifying Resilience and Depression Longitudinally’ (STRADL), reference 104036/Z/14/Z), and analysis was supported by MRC University Unit core grant MC_UU_00007/10 (QTL in Health and Disease program). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

T.J.M., R. Takei, M.P.L., N.A.S., R.K.T. and T.R.M. wrote the manuscript. T.J.M., R.T., H.M., M.P.L., N.A.S., R.K.T., W.-H.W., H.K.C., E.A.S., A.S., Y.O., C. Li, Y. Shi and T.R.M. designed the study. H.M., T.M.M., W.W., H.K.C., J.N.M., D.H.S., E.M.J., C. Lee, C. Li and T.R.M. managed an individual contributing study. H.M., M.P.L., W.W., M.J.C., A.J.P.-G., E.M., J.M.O’S., L.K.S., N.D., A.A., M.D., E.R., L.T.H.J., M.A., R.J.T., T.R., T.L.J., M.J., L.A.B.J., R. Toes, F.L., H.K.E., T.P., G.M.M., B.S., T.U., V.V., P.L.R., S.H.R., C. Lee, P.C.R., J.C., H.L., K.S. and S. Shringarpure critically reviewed the manuscript. T.J.M., R. Takei, M.P.L., N.A.S., R.K.T., Y. Shirai, W.W., M.J.C., A.J.P.-G., Z.L., A.J., M.E.M., E.M., E.E.K., W.-H.W., M.J.B., R.J.R., T.F., E.G., J.M.O’S., L.A.B.J., R.L., O.I.G., T.O.C., V.V., T.S.B., C.H., S.H.R., A.C., A.N., Y.K., Y.T., C. Lee, M.A.B., E.A.S., J.C., K.M.G., D.J.B., E.M.J., H.L., K.S., S. Shringarpure, Y.O., Y. Shi and T.R.M. carried out data acquisition, statistical methods and bioinformatic analyses. H.M., M.E.M., S.P.A.M., R.J.R., K.G.S., L.K.S., N.D., A.A., M.D., E.R., L.T.H.J., M.C.K., O.M., M.A., F.P.-R., R.J.T., T.R., T.L.J., M.J., T.O.C., S.R., F.K., T.W.J.H., R. Toes, F.L., P.R., T.B., H.K.E., T.P., G.M.M., L.H., B.S., A.-K.T., T.U., S.H.R., T.M.M., T.T., M.N., S. Shimizu, H.N., K.Y., K.M., N.S., K.I., C. Lee, L.A.B., M.A.B., P.C.R., R.R.C.B., C.L.H., S.L., M.D.S., M.R., J.N.M., D.H.S., E.M.J., K.S., A.S., Y.O., C. Li and T.R.M. recruited participants for the study.

Corresponding author

Correspondence to Tony R. Merriman.

Ethics declarations

Competing interests

W.W. and S. Shringarpure are employed by and hold stock or stock options in 23andMe. All other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Patrick Sulem and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Manhattan plots of full (combined sexes), male, and female African ancestry analysis.

The bars at the top of the Manhattan plots indicate where the genome-wide significant variants (P ≤ 5 × 10−8) are located. The red horizontal line indicates the P = 5 × 10−8 significance threshold.

Extended Data Fig. 2 Manhattan plots of full (combined sexes), male, and female East Asian ancestry analysis.

Manhattan plots show variants with -log10P ≤ 100 (loci that contain variants with -log10P > 100 are indicated with a triangle mark). The bars at the top of the Manhattan plots indicate where the genome-wide significant variants (P ≤ 5 × 10−8) are located. The red horizontal line indicates the P = 5 × 10−8 significance threshold.

Extended Data Fig. 3 Manhattan plots of full (combined sexes), male, and female European ancestry analysis.

Manhattan plots show variants with -log10P ≤ 100 (loci that contain variants with -log10P > 100 are indicated with a triangle mark). The bars at the top of the Manhattan plots indicate where the genome-wide significant variants (P ≤ 5 × 10−8) are located. The red horizontal line indicates the P = 5 × 10−8 significance threshold.

Extended Data Fig. 4 Manhattan plots of full (combined sexes), male, and female Latinx ancestry analysis.

Manhattan plots show variants with -log10P ≤ 100 (loci that contain variants with -log10P > 100 are indicated with a triangle mark). The bars at the top of the Manhattan plots indicate where the genome-wide significant variants (P ≤ 5 × 10−8) are located.

Extended Data Fig. 5 Manhattan plots of full (combined sexes), male, and female trans-ancestry meta-analysis.

Manhattan plots show variants with log10BF ≤ 100 (loci that contain variants with log10BF > 100 are indicated with a triangle mark). The bars at the top of the Manhattan plots indicate where the genome-wide significant variants (log10BF ≥ 6) are located. The red horizontal line indicates the log10BF = 6 significance threshold.

Extended Data Fig. 6 Bar plot of cell-type group enrichment of African, East Asian, European, and Latino gout GWAS for full, male-, and female-specific analyses.

Red dashed line: conservative p-value threshold of 4.2 × 10−4; Blue dashed line: p-value threshold of 5.0 × 10−3.

Extended Data Fig. 7 Bar plot of cell-type specific enrichment of African, East Asian, European, and Latino gout GWAS for full, male-, female-specific analyses.

Red dashed line: conservative p-value threshold of 1.9 × 10−5; Blue dashed line: p-value threshold of 2.2 × 10−4. Large dots: cell types with FDR-adjusted p-value ≤ 0.05.

Extended Data Fig. 8 Functional and pathway enrichment analyses of gout candidate genes.

The DAVID database was used to identify GO Biological Function term, KEGG and REACTOME pathways enriched in the gout GWAS dataset. Significance (FDR) of the enrichment is denoted on the x-axis, size of the circle denotes number of genes contributing to the enrichment term.

Extended Data Fig. 9 DGAT2: Example of genome organization at a candidate immune-priming lncRNA locus.

ENCODE H3K4me3 signal track from CD14+ monocytes indicates enrichment at the promoters of DGAT2, the lncRNA RP11-535A19.2 and UVRAG. ENCODE CTCF signal track from neutrophils and CD14+ monocytes indicates CTCF binding at rs11236533. Genehancer connections are in green and illustrate physical connections (Hi-C) between rs11236533 which disrupts a CTCF site and additional maximally-associated SNPs at two Genehancer regulatory elements. Red and blue dots indicate the CpG locations that are associated with co-localized meQTL and the color denotes direction of effect of the gout risk allele (red = higher methylation, blue = lower methylation). White lollipops represent maximally-associated SNPs at the locus within predicted cis regulatory elements.

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–7

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–42

Supplementary Data 1

LocusZoom plots of all ancestry-specific and trans-ancestral loci detected in the gout GWAS and of all loci detected in the sex-specific gout GWAS.

Supplementary Data 2

LocusZoom plots of all loci that demonstrated a signal of association with gout but not urate.

Supplementary Data 3

LocusZoom plots of all loci that demonstrated a signal of association with urate but not gout.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Major, T.J., Takei, R., Matsuo, H. et al. A genome-wide association analysis reveals new pathogenic pathways in gout. Nat Genet 56, 2392–2406 (2024). https://doi.org/10.1038/s41588-024-01921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01921-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing