Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 290 results
Advanced filters: Author: Oliver Bell Clear advanced filters
  • Large quantum computers are likely to require methods of connecting devices by transmitting and absorbing photons. Entanglement between two superconducting qubit devices has now been established using a waveguide with tunable directionality.

    • Aziza Almanakly
    • Beatriz Yankelevich
    • William D. Oliver
    Research
    Nature Physics
    Volume: 21, P: 825-830
  • A hybrid analogue–digital quantum simulator is used to demonstrate beyond-classical performance in benchmarking experiments and to study thermalization phenomena in an XY quantum magnet, including the breakdown of Kibble–Zurek scaling predictions and signatures of the Kosterlitz–Thouless phase transition.

    • T. I. Andersen
    • N. Astrakhantsev
    • X. Mi
    ResearchOpen Access
    Nature
    Volume: 638, P: 79-85
  • Deterministic sources of entangled photons are important for photonic quantum networks, but many applications are only possible when their wavelengths are tunable. Here, the authors use on-chip strain engineering to demonstrate such a source with silicon-integrated InAs/GaAs quantum dots.

    • Yan Chen
    • Jiaxiang Zhang
    • Oliver G. Schmidt
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • Quantum communications require sources of entangled photons. Electrically triggered sources usually suffer from low entangled-emission efficiency. Here, the authors use piezoelectric strains to tune the fine structure of quantum dot emitters, and increase the entanglement probability and fidelity.

    • Jiaxiang Zhang
    • Johannes S. Wildmann
    • Oliver G. Schmidt
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-8
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • The Nobel Prize in Physiology or Medicine 2007 was won by Mario R. Capecchi, Martin J. Evans and Oliver Smithies for discoveries that led to the development of knockout mice.

    • Oliver Smithies
    Comments & Opinion
    Nature
    Volume: 467, P: S6
  • Research on superconductivity in magic-angle twisted bilayer graphene reveals unconventional behaviour, an anisotropic gap and a significant role of quantum geometry, using combined d.c. transport and microwave measurements, suggesting new insights into superconductivity mechanisms.

    • Miuko Tanaka
    • Joel ÃŽ-j. Wang
    • William D. Oliver
    Research
    Nature
    Volume: 638, P: 99-105
  • Genome-wide data from 400 individuals indicate that the initial spread of the Beaker archaeological complex between Iberia and central Europe was propelled by cultural diffusion, but that its spread into Britain involved a large-scale migration that permanently replaced about ninety per cent of the ancestry in the previously resident population.

    • Iñigo Olalde
    • Selina Brace
    • David Reich
    Research
    Nature
    Volume: 555, P: 190-196
    • S. P. OLIVER
    Research
    Nature
    Volume: 20, P: 337-338
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Fe-exchanged zeolite catalysts are known for their ability to remediate NOx and N2O emissions, but their reactivity in mixed streams of NO and N2O remains unclear. Now a suite of operando spectroscopies reveals the active Fe species involved in the process and their synergistic effect during the simultaneous conversion of these pollutants.

    • Filippo Buttignol
    • Jörg W. A. Fischer
    • Davide Ferri
    Research
    Nature Catalysis
    Volume: 7, P: 1305-1315
  • Human-driven landscape change may alter disease transmission among insect pollinators. Here, the authors show that species traits, flower-rich habitat and floral resource overlap with honeybees explain load and prevalence of viruses in wild bees and hoverflies co-occurring with honeybees.

    • Corina Maurer
    • Alexandria Schauer
    • Matthias Albrecht
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 8, P: 2239-2251
  • Scalable and integratable sources of entangled-photon pairs are an important building block for quantum photonic applications. Here, Huberet al. demonstrate that droplet-etched gallium arsenide quantum dots can emit highly indistinguishable photon pairs with a high degree of entanglement.

    • Daniel Huber
    • Marcus Reindl
    • Rinaldo Trotta
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-7
  • The molecular-level mechanism by which manganese enhances cobalt catalysts for Fischer−Tropsch synthesis (FTS) of long-chain hydrocarbons from syngas is not well understood. Here, the authors demonstrate that manganese promotes long-chain hydrocarbon production in Co-based FTS catalysts by binding H at basic O sites on MnO, reducing chain termination on Co and thus promoting C5+ products.

    • Hao Chen
    • Zan Lian
    • Miquel Salmeron
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-10
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the ___location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10