Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superfluid stiffness of magic-angle twisted bilayer graphene

Abstract

The physics of superconductivity in magic-angle twisted bilayer graphene (MATBG) is a topic of keen interest in moiré systems research, and it may provide an insight into the pairing mechanism of other strongly correlated materials such as high-critical-temperature superconductors. Here we use d.c. transport and microwave circuit quantum electrodynamics to directly measure the superfluid stiffness of superconducting MATBG through its kinetic inductance. We find the superfluid stiffness to be much larger than expected from conventional Fermi liquid theory. Rather, it is comparable to theoretical predictions1 and recent experimental indications2 of quantum geometric effects that are dominant at the magic angle. The temperature dependence of the superfluid stiffness follows a power law, which contraindicates an isotropic Bardeen–Cooper–Schrieffer (BCS) model. Instead, the extracted power-law exponents indicate an anisotropic superconducting gap, whether interpreted in the Fermi liquid framework or by considering the quantum geometry of flat-band superconductivity. Moreover, a quadratic dependence of the superfluid stiffness on both d.c. and microwave current is observed, which is consistent with the Ginzburg–Landau theory. Taken together, our findings show that MATBG is an unconventional superconductor with an anisotropic gap and strongly suggest a connection between quantum geometry, superfluid stiffness and unconventional superconductivity in MATBG. The combined d.c.–microwave measurement platform used here is applicable to the investigation of other atomically thin superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kinetic inductance measurement and device configuration.
Fig. 2: Gate-voltage-dependent d.c. and microwave characteristics.
Fig. 3: Temperature-dependent shift in resonant frequency due to varying superfluid stiffness.
Fig. 4: d.c. bias and microwave power dependence of resonant frequency.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request and with the cognizance of our US government sponsors who funded the work.

References

  1. Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).

    Article  MATH  Google Scholar 

  2. Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  3. Cao, Y. et al. Correlated insulator behavior at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  4. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  5. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  CAS  MATH  Google Scholar 

  7. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  8. Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  9. Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 264–271 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  10. Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  11. Hu, X., Hyart, T., Pikulin, D. I. & Rossi, E. Geometric and conventional contribution to the superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 123, 237002 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Julku, A., Peltonen, T. J., Liang, L., Heikkilä, T. T. & Törmä, P. Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene. Phys. Rev. B 101, 060505 (2020).

    Article  ADS  CAS  Google Scholar 

  13. Xie, F., Song, Z., Lian, B. & Bernevig, B. A. Topology-bounded superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 124, 167002 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  14. Hofmann, J. S., Chowdhury, D., Kivelson, S. A. & Berg, E. Heuristic bounds on superconductivity and how to exceed them. npj Quantum Mater. 7, 83 (2022).

    Article  ADS  MATH  Google Scholar 

  15. Ma, C. et al. Moiré band topology in twisted bilayer graphene. Nano Lett. 20, 6076–6083 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  16. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article  ADS  CAS  MATH  Google Scholar 

  17. Tinkham, M. Introduction to Superconductivity: Second Edition (Dover Publications, 2004).

  18. Prozorov, R. & Giannetta, R. W. Magnetic penetration depth in unconventional superconductors. Supercond. Sci. Technol. 19, R41 (2006).

    Article  ADS  CAS  MATH  Google Scholar 

  19. Hardy, W., Kamal, S. & Bonn, D. Magnetic Penetration Depths in Cuprates: A Short Review of Measurement Techniques and Results (Springer, 2002).

  20. Bøttcher, C. et al. Circuit quantum electrodynamics detection of induced two-fold anisotropic pairing in a hybrid superconductor–ferromagnet bilayer. Nat. Phys. 20, 1609–1615 (2024).

  21. Phan, D. et al. Detecting induced p ± ip pairing at the Al-InAs interface with a quantum microwave circuit. Phys. Rev. Lett. 128, 107701 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  22. Weitzel, A. et al. Sharpness of the Berezinskii-Kosterlitz-Thouless transition in disordered NbN films. Phys. Rev. Lett. 131, 186002 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  23. Penttilä, R. P. S., Huhtinen, K.-E. & Törmä, P. Flat-band ratio and quantum metric in the superconductivity of modified Lieb lattices. Preprint at https://arxiv.org/abs/2404.12993 (2024).

  24. Probst, S., Song, F. B., Bushev, P. A., Ustinov, A. V. & Weides, M. Efficient and robust analysis of complex scattering data under noise in microwave resonators. Rev. Sci. Instrum. 86, 024706 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Emery, V. & Kivelson, S. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  CAS  MATH  Google Scholar 

  26. Kosterlitz, J. M. & Thouless, D. J. in Basic Notions Of Condensed Matter Physics 493–515 (CRC Press, 1973).

  27. Berdyugin, A. I. et al. Out-of-equilibrium criticalities in graphene superlattices. Science 375, 430–433 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  28. Wu, F. Topological chiral superconductivity with spontaneous vortices and supercurrent in twisted bilayer graphene. Phys. Rev. B 99, 195114 (2019).

    Article  ADS  CAS  Google Scholar 

  29. Törmä, P. Essay: where can quantum geometry lead us? Phys. Rev. Lett. 131, 240001 (2023).

    Article  ADS  MathSciNet  PubMed  MATH  Google Scholar 

  30. Hirschfeld, P. J. & Goldenfeld, N. Effect of strong scattering on the low-temperature penetration depth of a d-wave superconductor. Phys. Rev. B 48, 4219 (1993).

    Article  ADS  CAS  MATH  Google Scholar 

  31. Roppongi, M. et al. Bulk evidence of anisotropic s-wave pairing with no sign change in the kagome superconductor CsV3Sb5. Nat. Commun. 14, 667 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  32. Teknowijoyo, S. et al. Nodeless superconductivity in the type-II Dirac semimetal PdTe2: London penetration depth and pairing-symmetry analysis. Phys. Rev. B 98, 024508 (2018).

    Article  ADS  CAS  Google Scholar 

  33. Khvalyuk, A. V., Charpentier, T., Roch, N., Sacépé, B. & Feigel’Man, M. V. Near power-law temperature dependence of the superfluid stiffness in strongly disordered superconductors. Phys. Rev. B 109, 144501 (2024).

    Article  ADS  CAS  Google Scholar 

  34. Ghosal, A., Randeria, M. & Trivedi, N. Inhomogeneous pairing in highly disordered s-wave superconductors. Phys. Rev. B 65, 014501 (2001).

    Article  ADS  MATH  Google Scholar 

  35. Mishra, V. et al. Lifting of nodes by disorder in extended-s-state superconductors: application to ferropnictides. Phys. Rev. B 79, 094512 (2009).

    Article  ADS  Google Scholar 

  36. Cho, K. et al. Energy gap evolution across the superconductivity dome in single crystals of (Ba1–xKx) Fe2As2. Sci. Adv. 2, e1600807 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Gittleman, J., Rosenblum, B., Seidel, T. & Wicklund, A. Nonlinear reactance of superconducting films. Phys. Rev. 137, A527 (1965).

    Article  ADS  MATH  Google Scholar 

  38. Enpuku, K., Hoashi, M., Doi, H. D. H. & Kisu, T. K. T. Modulation of kinetic inductance of high Tc superconducting thin films with bias current. Jpn. J. Appl. Phys. 32, 3804 (1993).

    Article  ADS  CAS  MATH  Google Scholar 

  39. Kubo, T. Superfluid flow in disordered superconductors with Dynes pair-breaking scattering: depairing current, kinetic inductance, and superheating field. Phys. Rev. Res. 2, 033203 (2020).

    Article  CAS  MATH  Google Scholar 

  40. Anthore, A., Pothier, H. & Esteve, D. Density of states in a superconductor carrying a supercurrent. Phys. Rev. Lett. 90, 127001 (2003).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  41. Luomahaara, J., Vesterinen, V., Grönberg, L. & Hassel, J. Kinetic inductance magnetometer. Nat. Commun. 5, 4872 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Ku, J., Manucharyan, V. & Bezryadin, A. Superconducting nanowires as nonlinear inductive elements for qubits. Phys. Rev. B 82, 134518 (2010).

    Article  ADS  Google Scholar 

  43. Claassen, J., Adrian, S. & Soulen, R. Large non-linear kinetic inductance in superconductor/normal metal bilayer films. IEEE Trans. Appl. Supercond. 9, 4189–4192 (1999).

    Article  ADS  Google Scholar 

  44. Thomas, C. N., Withington, S., Sun, Z., Skyrme, T. & Goldie, D. J. Nonlinear effects in superconducting thin film microwave resonators. New J. Phys. 22, 073028 (2020).

    Article  ADS  CAS  Google Scholar 

  45. Vissers, M. R. et al. Frequency-tunable superconducting resonators via nonlinear kinetic inductance. Appl. Phys. Lett. 107, 062601 (2015).

  46. Kirsh, N. et al. Linear and nonlinear properties of a compact high-kinetic-inductance WSi multimode resonator. Phys. Rev. A 16, 044017 (2021).

    Article  CAS  Google Scholar 

  47. Zhao, S., Withington, S., Goldie, D. J. & Thomas, C. N. Nonlinear properties of supercurrent-carrying single-and multi-layer thin-film superconductors. J. Low Temp. Phys. 199, 34–44 (2020).

    Article  ADS  CAS  Google Scholar 

  48. Carrington, A., Giannetta, R., Kim, J. & Giapintzakis, J. Absence of nonlinear Meissner effect in YBa2Cu3O6.95. Phys. Rev. B 59, R14173 (1999).

    Article  ADS  CAS  Google Scholar 

  49. Li, M.-R., Hirschfeld, P. & Wölfle, P. Is the nonlinear Meissner effect unobservable? Phys. Rev. Lett. 81, 5640 (1998).

    Article  ADS  CAS  MATH  Google Scholar 

  50. Banerjee, A. et al. Superfluid stiffness of twisted trilayer graphene superconductors. Nature https://doi.org/10.1038/s41586-024-08444-3 (2025).

  51. Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  53. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  54. Pozar, D. M. Microwave Engineering (John Wiley & Sons, 2011).

  55. Schmidt, F. E., Jenkins, M. D., Watanabe, K., Taniguchi, T. & Steele, G. A. A ballistic graphene superconducting microwave circuit. Nat. Commun. 9, 4069 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  56. Bretheau, L. et al. Tunnelling spectroscopy of Andreev states in graphene. Nat. Phys. 13, 756–760 (2017).

    Article  CAS  MATH  Google Scholar 

  57. Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with P. Törmä, L. Levitov, S. Todadri, M. Roppongi, K. Ishihara, T. Kitamura and Y. Yanase. We thank L. Ateshian, D. Rower, P. Harrington and the device packaging team at the MIT Lincoln Laboratory for technical assistance. This research was funded in part by the US Army Research Office grant no. W911NF-22-1-0023, by the National Science Foundation QII-TAQS grant no. OMA-1936263, by the Air Force Office of Scientific Research grant no. FA2386-21-1-4058 and by the Under Secretary of Defense for Research and Engineering under Air Force contract no. FA8702-15-D-0001. M.T. acknowledges support from the JSPS KAKENHI (grant no. 23K19026), Murata Science and Education Foundation, and JST, PRESTO (grant no. JPMJPR24H7). P.J.-H. acknowledges support by the National Science Foundation (DMR-1809802), the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant no. GBMF9463, the Fundacion Ramon Areces and the CIFAR Quantum Materials program. D.R.-L. acknowledges support from the Rafael del Pino Foundation. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant nos. 21H05233 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

J.Î-j.W. conceived and designed the experiment. M.T., J.Î-j.W., T.H.D. and M.H. performed the microwave simulation. M.T., J.Î-j.W., T.H.D., S.Z., D.R.-L., D.K.K., B.M.N., K.S. and M.E.S. contributed to the device fabrication. M.T., J.Î-j.W., T.H.D., S.Z., D.R.-L., A.A. and B.K. participated in the measurements. M.T., J.Î-j.W. and M.H. analysed the data. K.W. and T.T. grew the hBN crystal. J.Î-j.W., M.T. and W.D.O. led the paper writing, and all other authors contributed to the text. J.A.G., T.P.O., S.G., P.J.-H., J.Î-j.W. and W.D.O. supervised the project.

Corresponding authors

Correspondence to Joel Î-j. Wang, Pablo Jarillo-Herrero or William D. Oliver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Fan Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Microwave and DC characterization setup.

Wiring diagram in the dilution refrigerator, which includes attenuators, amplifiers, isolators, and filters.

Extended Data Fig. 2 Model and simulation of the resonator with termination.

a, Model used for the microwave simulation, including the through line, resonator, termination, and backgate. The termination includes both the MATBG (resistance or inductance, depending on bias point) and the proximitized edge inductance (independent of bias point). See main text. b, Out-of-plane magnetic field dependence of the resonance of Bernal-stacked bilayer graphene biased near its charge neutrality point. c, Simulated |S21| as a function of ∆fr = fr − 3.8 GHz for different values of CBG of the model. d, Simulated resonance frequency as a function of 1/LTBG for different values of Lprx. CBG is fixed at 3 fF. e, Data in panel d, with the baseline resonance frequency subtracted. Dashed lines are the linear fit to the simulation data. Inset depicts the slope of the linear fit as a function of offset frequency fr0, which depends on Lprx. f,g, Simulations of possible series (f) and parallel (g) contact resistances between the MATBG and the resonator, ground, and leads. Our results are most consistent with superconducting contacts, i.e., zero series resistance and large parallel resistance.

Extended Data Fig. 3 Temperature and power dependence of the resonant frequency for the aluminum-only λ/4 resonator (control resonator).

a, Microscope image of the aluminum-only λ/4 resonator, terminated directly to ground with Al. b, Temperature dependence of the resonance for the aluminum-only λ/4 resonator. c, Temperature dependence of fr(Tbase)/fr(T)-1 for the aluminum-only λ/4 resonator as fit with the isotropic BCS model (exponential fit, purple dashed line) and a power-law fit (black dashed line). d, |S21| for the aluminum-only λ/4 resonator at Tbase = 20 mK for different microwave powers. The power independence indicates the negligible kinetic inductance for the thick (250 nm) aluminum resonator and termination.

Extended Data Fig. 4 Temperature and power dependence of the resonant frequency for the resonator terminated by the Al-proximitized graphene edge.

a, Gate dependence of the resonance in the MATBG-terminated resonator. The insulating region is indicated by a vertical white dashed line VBG = 2.44 V. The frequency at this point is used as the reference point when determining a frequency shift. b, Temperature dependence of the resonance for the MATBG-terminated resonator in the insulating region VBG = 2.44 V. c, Temperature dependence of fr(Tbase)/fr(T) − 1 for the MATBG-terminated resonator in the insulating region VBG = 2.44 V and fit with the isotropic BCS model (purple dashed line) and the power-law fit (black dashed line). The resonance no longer shifts below about 0.5 K. d, Microwave power dependence of fr at VBG = −6.8, −6.9, −7.0 V (where the MATBG is superconducting) and VBG = −6.5 V (where the MATBG is insulating). In contrast to the MATBG traces, the proximitized edge does not vary substantially with power, indicating that its kinetic inductance is adopted from the aluminum leads and is relatively small compared with the bulk MATBG.

Extended Data Fig. 5 Estimation of Fermi velocity.

a, Differential resistance dV/dIDC as a function of DC bias current IDC and gate voltage VBG. The blue dashed line indicates Icn. b, Differential resistance dV/dIDC as a function of DC bias current IDC at VBG = − 6.82 V. c, Gate dependence of the Fermi velocity, extracted from vn = Jcn/\(\tilde{n}\) e.

Extended Data Fig. 6 Determination of TC.

a, The temperature dependence of the MATBG resistance at VBG = −6.7 V. Gray dashed lines represent linear fits. Red arrows and a red dashed line indicate the half value of line 1 at zero temperature. Critical temperatures are marked by arrows of different colors. b, c, Backgate dependence of critical temperatures T C(onset), TC (0.5), and TC (zero) as obtained from DC resistance measurements; and TC (MW) as obtained from microwave measurements in the hole-doped (b) and the electron-doped (c) regimes.

Extended Data Fig. 7 Gate dependence of DC and microwave response in the second device.

a, DC resistance R as a function of the backgate voltage VBG. Top axis represents the filling factor ν. Inset shows the optical microscope image of the second device. b, Microwave transmission coefficient |S21| versus VBG. The resonant frequency (bright line) shifts within the zero-resistance region in panel (a), near filling factors ν = ±2. The resonance remains essentially constant within the high resistance region. c, Differential resistance dV/dIDC as a function of VBG and DC bias current IDC.

Extended Data Fig. 8 Superfluid stiffness, carrier density, and critical temperature in the second device.

a,b, Frequency shift and inverse of the kinetic inductance as a function of VBG in hole-doped (a) and electron-doped (b) regimes. c, Superfluid stiffness Ds at base temperature Tbase as a function of effective carrier density \(\tilde{n}\), measured with respect to | = 2. The black dashed curve estimates the conventional contribution to the superfluid stiffness from single-band Fermi liquid theory: Ds(conv) = e2\(\tilde{n}\)vF/ħkF. d, Critical temperature TC and corresponding superfluid stiffness Ds at base temperature Tbase as tuned by VBG. The black dashed line represents the BKT limit TC = πħ2Ds(Tbase)/8e2kB.

Extended Data Fig. 9 Temperature dependence in the second device.

a, Resonance frequency fr as a function of temperature and VBG. b, Temperature dependence of the measured Ds at VBG = −6.6, −7.2, and −7.8 V and 8e2kBTħ2 (black dashed line), where TBKT is determined by their intersection. c, VBG dependence of the exponent determined from the power-law fitting at T < 0.3 TC. d, e, f, Power-law fitting of (∆fr(Tbase) − ∆fr(T))/∆fr(Tbase) at VBG = −6.6, −7.2, and −7.8 V.

Extended Data Fig. 10 DC bias current dependence in the second device.

a, IDC dependence of the DC resistance dV/dIDC at VBG = −7.3 V. Inset depicts the DC resistance as a function of IDC and VBG. b, IDC dependence of fr at VBG = −7.3 V. The blue dashed curve is the quadratic fit. Inset depicts fr as a function of IDC and VBG. c, IDC dependence of the DC resistance over the hole-doped SC region. d, IDC dependence of fr(I) − fr(I = 0) over the hole-doped SC region using a logarithmic scale. The black dashed line indicates the quadratic dependence.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–8 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, M., Wang, J.Îj., Dinh, T.H. et al. Superfluid stiffness of magic-angle twisted bilayer graphene. Nature 638, 99–105 (2025). https://doi.org/10.1038/s41586-024-08494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08494-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing