This study highlights a new methodology to develop electrical property of CeO2 without doping based on characteristic surface defects. The CeO2 surface approach presented in this work addresses the electrolyte material challenge faced by solid state oxide fuel cells (SOFCs) over 100 years. In our approach, we take advantage of the energy band structure and surface defect to develop new functional electrolyte material based on non-doped ceria. The oxygen vacancies and defects in surface state of the CeO2 result in new electrical and band properties, thus giving rise in superionic conduction for successful SOFCs application.
- Baoyuan Wang
- Bin Zhu
- Hao Wang