Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 96 results
Advanced filters: Author: Youyong Li Clear advanced filters
  • Design of hydrogen evolution catalysts needs to balance the hydrogen adsorption energy to facilitate easy adsorption and desorption. Here, the authors report a composite catalyst where hydrogen adsorption occurs on rhodium and desorbs from silicon which has a lower adsorption energy.

    • Lili Zhu
    • Haiping Lin
    • Mingwang Shao
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • Proteolysis targeting chimeras (PROTACs) enable selective protein degradation but rely on invasive methods like western blotting to assess efficiency. Here, the authors develop an environment-sensitive reporter (ESR) for the non-invasive monitoring of PROTACs-mediated protein degradation in vivo.

    • Tao Li
    • Qingyu Zong
    • Youyong Yuan
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Radialenes have distinct structural, electronic and chemical properties from other hydrocarbons, but their synthesis remains a challenge. Here, the authors report a copper catalyzed one-step synthetic protocol of [4]radialene via the cyclotetramerization of phenylacetylene molecules upon thermal activation.

    • Qing Li
    • Jianzhi Gao
    • Minghu Pan
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-7
  • A one-pot kinetically controlled synthetic framework for constructing regioselective architectures in a series of well-defined metallic heterostructures is demonstrated, in which phase and morphology regulation of Pd–Sb substrate are implemented to validate the kinetically controlled synthesis.

    • Xuan Huang
    • Jie Feng
    • Xiaoqing Huang
    Research
    Nature Nanotechnology
    Volume: 19, P: 1306-1315
  • Hydrogen sulfide is essential in many biological processes and a promising cancer imaging and signalling molecule and therapeutic agent, but the potential applications are hindered by its low endogenous levels. Here, the authors develop a nanoplatform based on H2S-responsive self-immolative poly(thiocarbamate) with localized H2S signal amplification capability and use the nanoplatform to encapsulate an H2S-responsive fluorescent probe or an anticancer prodrug.

    • Qingyu Zong
    • Jun Li
    • Youyong Yuan
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-14
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Some cancer patients first present with metastases where the ___location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The transformation of CO and H2O into C2+ fuels using renewable electricity represents a significant stride in carbon recycling. Here, the authors introduce a plasma-treated Cu catalyst, achieving high CO coverage and promoted C-C coupling ability for efficient n-propanol formation.

    • Wenzhe Niu
    • Jie Feng
    • Bo Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • A metastable pentagonal PdTe2 monolayer has been synthesized through symmetry-driven epitaxy, utilizing lattice matching with a Pd(100) substrate. The lattices, phonons and electronic structures of this phase have been studied.

    • Lina Liu
    • Yujin Ji
    • Yong P. Chen
    Research
    Nature Materials
    Volume: 23, P: 1339-1346
  • Photocatalytic H2O2 synthesis is often performed in lab-scale batch reactors with low efficiency. Here, the authors report a biphasic fluid system that enables continuous H2O2 synthesis and automatic product extraction, addressing the limitations of traditional methods.

    • Chaochen Shao
    • Xiaohan Yu
    • Yanguang Li
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-9
  • The nanoparticle-polymer interface plays a key role in nanoparticle-polymer composites but understanding the structures and properties of the interfacial region remains challenging. Here, the authors directly observe the presence of two interfacial polymer layers around a nanoparticle in polar polymers with different polar molecular conformations from the bulk polymer leading to an enhancement in polarity-related properties of polymer nanocomposites

    • Xinhui Li
    • Shan He
    • Ce-Wen Nan
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-10
  • Despite the importance of grapevine cultivation in human history and the economic values of cultivar improvement, large-scale genomic variation data are lacking. Here the authors resequence 472 Vitis accessions and use the identified genetic variations for domestication history, demography, and GWAS analyses.

    • Zhenchang Liang
    • Shengchang Duan
    • Yang Dong
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-12
  • Separating molecules or ions with sub-Angstrom scale precision is important but technically challenging. Here, the authors demonstrate that precise solute-solute separation can be achieved using polyamide membranes formed via surfactant-assembly regulated interfacial polymerization.

    • Yuanzhe Liang
    • Yuzhang Zhu
    • Shihong Lin
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-9
  • While water electrolysis devices represent a technology for renewable energy, there are few stable catalysts that survive the acidic conditions. Here, authors enhance acidic oxygen evolution by introducing strong Brønsted acid sites into RuO2 to accelerate bridging-oxygen-assisted deprotonation.

    • Yunzhou Wen
    • Cheng Liu
    • Bo Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-11
  • Tea is an important beverage crop with a large and heterozygous genome. Here, the authors assemble the genome of the cultivar Longjing 43 and conduct a population genetics study to reveal divergent selection for disease resistance and flavor between the two variety groups.

    • Xinchao Wang
    • Hu Feng
    • Yajun Yang
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • To explore early alterations and underlying associations of dopamine levels and microstructure in Parkinson’s Disease (PD), Shang et al use a hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI) approach in early stage patients and age-matched controls. Their data implies that molecular degeneration mediates the effects of microstructural disorganization on motor dysfunction in the early stages of PD.

    • Song’an Shang
    • Daixin Li
    • Xindao Yin
    ResearchOpen Access
    Communications Biology
    Volume: 4, P: 1-9
  • Structural variations in gastric cancer impact progression. Here, the authors perform whole-genome sequencing on 168 gastric cancer patients and identified tandem-duplications of super-enhancer ZFP36L2 in 10% of gastric cancer, and mutational signatures in tumors with cadherin 1 mutations that associated with poor prognoses.

    • Rui Xing
    • Yong Zhou
    • Youyong Lu
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-13
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Multimetal oxyhydroxides are among the most active catalysts for alkaline water oxidation, but tuning their properties remains a challenge. Now, the performance of NiFe- and FeCo-based catalysts is optimized with the incorporation of high-valence modulator metals, which shifts the active metals towards lower valence states and enables lower overpotentials.

    • Bo Zhang
    • Lie Wang
    • Edward H. Sargent
    Research
    Nature Catalysis
    Volume: 3, P: 985-992
  • Developing organic photoluminescent materials with high emission efficiencies in the solid state under a water atmosphere is important for practical applications. Here, the authors report the formation of intra- and intermolecular hydrogen bonds in a tautomerizable Schiff base and intercalation of water in the crystal lattice leading to a luminescent organic hydrate.

    • Feng Zhou
    • Peiyang Gu
    • Jianmei Lu
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-8
  • Well-defined metastable phase nanostructures are a core issue for catalyst design. Here, the authors report metastable monoclinic phase IrO2 nanoribbons obtained via a molten-alkali mechanochemical method, which exhibit intrinsic high performance towards the acidic oxygen evolution reaction.

    • Fan Liao
    • Kui Yin
    • Qi Shao
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-11