Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 117 results
Advanced filters: Author: Zhongming Zhang Clear advanced filters
  • The authors introduce DD2D, a physics-guided deep learning method that predicts 2D structures directly from diffraction patterns using a twin-tower framework. The method demonstrates high anti-interference, robust recognition, and up to 99.0% prediction accuracy, showing promise for future 2D materials discoveries.

    • Rong Fu
    • Tianhao Su
    • Zhongming Ren
    ResearchOpen Access
    Communications Physics
    Volume: 8, P: 1-7
  • Here, the authors fabricate hybrid van der Waals heterostructures based on 2D tessellations of DNA origami thin films, graphene and boron nitride, showing that the DNA films can induce periodic superlattices at the interface and modulate the electronic properties of the samples.

    • Kai Zhao
    • Baojuan Dong
    • Funan Liu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Fluid-solid interaction, long investigated, is mostly neglected in topological acoustics. Here the authors find that it can give rise to intriguing topological phenomena in simple phononic crystals due to intrinsic differences between sound in fluid and solid.

    • Xiaoxiao Wu
    • Haiyan Fan
    • Xiang Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-7
  • 2D materials can be doped with magnetic atoms in order to boost their potential applications in spintronics. Here, the authors fabricate Fe-doped SnS2 monolayers and show that Fe0.021Sn0.979S2 exhibits ferromagnetic behaviour with perpendicular anisotropy at 2 K, and a Curie temperature of 31 K.

    • Bo Li
    • Tao Xing
    • Zhongming Wei
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-7
  • A wax-aided immersion methodology is developed to yield graphene rolls with tunable chiral angles; these graphene rolls exhibit promising chiral electronic properties beyond those of other carbon allotropes.

    • Enbing Zhang
    • Shuaishuai Ding
    • Wenping Hu
    Research
    Nature Materials
    Volume: 24, P: 377-383
  • Nanomagnetic materials allow for the emission and detection of microwave radiation in technological applications by spin excitation. Here, the authors present sensitive room-temperature microwave detectors based on nanoscale magnetic tunnel junctions, enabled via spin torque and injection locking.

    • Bin Fang
    • Mario Carpentieri
    • Zhongming Zeng
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Losses, due to their non-Hermitian nature, are generally disregarded or even considered harmful when looking for non-trivial topological phases. Here, the authors experimentally demonstrate that higher-order topology can emerge as a result of introducing losses in an acoustic crystal.

    • He Gao
    • Haoran Xue
    • Baile Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-7
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The identification of HLA epitopes is essential for vaccine and immunotherapy development. Here, authors develop ImmuneApp using deep learning on extensive immunopeptidomics data, advancing antigen presentation prediction, neoepitope prioritisation, and immunopeptidomics deconvolution.

    • Haodong Xu
    • Ruifeng Hu
    • Zhongming Zhao
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the ___location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A van der Waals epitaxial strategy is reported for growing intrinsic quantum dots (QDs) by modulating interfacial couplings on van der Waals surfaces. This method overcomes lattice mismatch constraints and produces versatile III–V and IV–VI QDs with controllable morphologies, broadening near-infrared photoresponse in InSb QDs/MoS2 by efficient interlayer charge transfer.

    • Kaiyao Xin
    • Lian Li
    • Shenqiang Zhai
    Research
    Nature Synthesis
    Volume: 3, P: 1176-1183
  • Antiferromagnets have a variety of attractive features such as rapid operation, lack of stray fields, and insensitivity to external perturbations, that make an exciting prospect for memory and computing applications. Unfortunately, readout of the antiferromagnetic state is challenging. Here, Yan, Mao and coauthors demonstrate an antiferromagnet that can be switched between antiferromagnetic phases via piezoelectric strain with a large difference in the resistance between the two antiferromagnetic phases.

    • Han Yan
    • Hongye Mao
    • Zhiqi Liu
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • Boron neutron capture therapy (BNCT) is a type of radiotherapy that induces cell damage through a localized nuclear reaction. Here the authors describe the design of a carborane-based covalent organic framework as a boron capsule loaded with immune adjuvants for concurrent BNCT and immunotherapy, promoting anti-tumour immune responses in preclinical cancer models.

    • Yaxin Shi
    • Zhibin Guo
    • Zhibo Liu
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • Direct synthesis of large area crystalline black phosphorus films is still challenging. Here, the authors report growth of high-quality black phosphorus films on insulating silicon substrates through a gas-phase epitaxial growth strategy with field-effect and Hall mobilities of over 1200 and 1400 cm2 /Vs at room temperature, respectively and a current on/off ratio of up to 106, comparable to the exfoliated flakes.

    • Yijun Xu
    • Xinyao Shi
    • Kai Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-8
  • Microwave devices are instrumental in wireless communications. Recently, spintronic-based microwave devices have seen significant interest, with the potential for smaller size, and lower power consumption. Here, Zhu et al demonstrate a spintronic amplifier with record gain, which uses material stacks already employed in industrially fabricated magnetic memories.

    • Keqiang Zhu
    • Mario Carpentieri
    • Zhongming Zeng
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-9
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Flexible electronic hydrogels that allow conformal tissue integration, online precision diagnosis, and simultaneous tissue regeneration are desired for advancing the treatment of myocardial infarction. Here, the authors report a chronological adhesive hydrogel patch integrating diagnostic and therapeutic functions through mechanophysiological monitoring and electrocoupling therapy.

    • Chaojie Yu
    • Mingyue Shi
    • Junjie Li
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-14
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • A new exchange-bias effect between two different antiferromagnetic layers enables the fabrication of all-antiferromagnetic structures that have a large room-temperature tunnelling magnetoresistance and potential applications for ultrafast memory technologies.

    • Peixin Qin
    • Han Yan
    • Zhiqi Liu
    Research
    Nature
    Volume: 613, P: 485-489
  • Chemical vapor deposition (CVD) is a versatile method to synthesize 2D materials, but usually requires high growth temperatures. Here, the authors report a BiOCl-assisted CVD approach to grow 2D nanosheets from 27 different layered and nonlayered materials at temperatures <500 °C, which are compatible with back-end-of-the-line industrial processes.

    • Biao Qin
    • Muhammad Zeeshan Saeed
    • Xidong Duan
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-12