Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acquired amphotericin B resistance leads to fitness trade-offs that can be mitigated by compensatory evolution in Candida auris

Abstract

Candida auris is a growing concern due to its resistance to antifungal drugs, particularly amphotericin B (AMB), detected in 30 to 60% of clinical isolates. However, the mechanisms of AMB resistance remain poorly understood. Here we investigated 441 in vitro- and in vivo-evolved C. auris lineages from 4 AMB-susceptible clinical strains of different clades. Genetic and sterol analyses revealed four major types of sterol alterations as a result of clinically rare variations in sterol biosynthesis genes ERG6, NCP1, ERG11, ERG3, HMG1, ERG10 and ERG12. In addition, aneuploidies in chromosomes 4 and 6 emerged during resistance evolution. Fitness trade-off phenotyping and mathematical modelling identified diverse strain- and mechanism-dependent fitness trade-offs. Variation in CDC25 rescued fitness trade-offs, thereby increasing the infection capacity. This possibly contributed to therapy-induced acquired AMB resistance in the clinic. Our findings highlight sterol-modulating mechanisms and fitness trade-off compensation as risks for AMB treatment failure in clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental evolution and resistance–fitness analysis.
Fig. 2: AMB susceptibility and membrane sterol profile of whole-genome-sequenced strains and constructed ERG gene mutants.
Fig. 3: Fitness trade-offs of four main sterol alteration types.
Fig. 4: Model-based population size estimates of resistant mutants after treatment.
Fig. 5: Resistance and fitness effects of variation in ERG6 and CDC25.

Similar content being viewed by others

Data availability

Parental strains of C. auris are available via the CDC & FDA Antibiotic Resistance Isolate Bank (https://wwwn.cdc.gov/arisolatebank/; panel identifier CAU—strain AR0387 and strain AR1097 respectively) or upon request from J.F.M. ([email protected]). Illumina sequences are available via the NCBI Sequence Read Archive (SRA) BioProject PRJNA984918 accession numbers SRR26533546SRR26533577. AMB susceptibility data of clinical isolates of C. auris from ref. 13 are summarized in supplementary table 1 of that study and were shared by S. R. Lockhart ([email protected]). Source data are provided with this paper. Requests for further information should be directed to and will be fulfilled by the corresponding authors.

Code availability

The code used for mathematical modelling is available via GitHub at https://github.com/GiorgioBoccarella/AMB_paper.

References

  1. Chowdhary, A., Sharma, C. & Meis, J. F. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 13, e1006290 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. Lone, S. A. & Ahmad, A. Candida auris—the growing menace to global health. Mycoses 62, 620–637 (2019).

    PubMed  Google Scholar 

  3. Lyman, M. et al. Worsening spread of Candida auris in the United States, 2019 to 2021. Ann. Intern. Med. 176, 489–495 (2023).

    PubMed  PubMed Central  Google Scholar 

  4. Lockhart, S. R. et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64, 134–140 (2017).

    CAS  PubMed  Google Scholar 

  5. Rhodes, J. & Fisher, M. C. Global epidemiology of emerging Candida auris. Curr. Opin. Microbiol. 52, 84–89 (2019).

    PubMed  Google Scholar 

  6. Satoh, K. et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 53, 41–44 (2009).

    CAS  PubMed  Google Scholar 

  7. Spruijtenburg, B. et al. Confirmation of fifth Candida auris clade by whole genome sequencing. Emerg. Microbes Infect. 11, 2405–2411 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Suphavilai, C. et al. Detection and characterisation of a sixth Candida auris clade in Singapore: a genomic and phenotypic study. Lancet Microbe 5, 100878 (2024).

    PubMed  Google Scholar 

  9. Sharma, C. & Kadosh, D. Perspective on the origin, resistance, and spread of the emerging human fungal pathogen Candida auris. PLoS Pathog. 19, e1011190 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lepak, A. J., Zhao, M., Berkow, E. L., Lockhart, S. R. & Andes, D. R. Pharmacodynamic optimization for treatment of invasive Candida auris infection. Antimicrob. Agents Chemother. 61, e00791-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Carolus, H., Pierson, S., Lagrou, K. & Van Dijck, P. Amphotericin B and other polyenes—discovery, clinical use, mode of action and drug resistance. J. Fungi 6, 321 (2020).

    CAS  Google Scholar 

  12. Ahmad, S., Khan, Z., Al-Sweih, N., Alfouzan, W. & Joseph, L. Candida auris in various hospitals across Kuwait and their susceptibility and molecular basis of resistance to antifungal drugs. Mycoses 63, 104–112 (2020).

    CAS  PubMed  Google Scholar 

  13. Chow, N. A. et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 11, e03364-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Escandón, P. et al. Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance. Clin. Infect. Dis. 68, 15–21 (2019).

    PubMed  Google Scholar 

  15. Khan, Z. et al. Increasing prevalence, molecular characterization and antifungal drug susceptibility of serial Candida auris isolates in Kuwait. PLoS ONE 13, e0195743 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Zhu, Y. et al. Laboratory analysis of an outbreak of Candida auris in New York from 2016 to 2018: impact and lessons learned. J. Clin. Microbiol. 58, e01503-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  17. Chowdhary, A., Jain, K. & Chauhan, N. Candida auris genetics and emergence. Annu. Rev. Microbiol. 77, 583–602 (2023).

    CAS  PubMed  Google Scholar 

  18. Rybak, J. M., Cuomo, C. A. & Rogers, P. D. The molecular and genetic basis of antifungal resistance in the emerging fungal pathogen Candida auris. Curr. Opin. Microbiol. 70, 102208 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhattacharya, S., Esquivel, B. D. & White, T. C. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. mBio 9, e01291-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Kordalewska, M. et al. Rare modification in the ergosterol biosynthesis pathway leads to amphotericin B resistance in Candida auris clinical isolates. Preprint at bioRxiv https://doi.org/10.1101/2021.10.22.465535 (2021).

  21. Rybak, J. M. et al. In vivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris. Clin. Microbiol. Infect. 28, 838–843 (2022).

    CAS  PubMed  Google Scholar 

  22. Carolus, H. et al. Genome-wide analysis of experimentally evolved Candida auris reveals multiple novel mechanisms of multidrug resistance. mBio 12, e03333-20 (2021).

    PubMed  PubMed Central  Google Scholar 

  23. Shivarathri, R. et al. Comparative transcriptomics reveal possible mechanisms of amphotericin B resistance in Candida auris. Antimicrob. Agents Chemother. 66, e0227621 (2022).

    PubMed  Google Scholar 

  24. Vincent, B. M., Lancaster, A. K., Scherz-Shouval, R., Whitesell, L. & Lindquist, S. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol. 11, e1001692 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vandeputte, P. et al. A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrob. Agents Chemother. 52, 3701–3709 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian, S. et al. Genetic microevolution of clinical Candida auris with reduced amphotericin B sensitivity in China. Emerg. Microbes Infect. 13, 2398596 (2024).

    PubMed  PubMed Central  Google Scholar 

  27. Schikora-Tamarit, M. A. & Gabaldón, T. Recent gene selection and drug resistance underscore clinical adaptation across Candida species. Nat. Microbiol. 9, 284–307 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. Proc. Natl Acad. Sci. USA 89, 10915–10919 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cline, M. S. & Karchin, R. Using bioinformatics to predict the functional impact of SNVs. Bioinformatics 27, 441–448 (2011).

    CAS  PubMed  Google Scholar 

  30. Johnston, E. J., Moses, T. & Rosser, S. J. The wide-ranging phenotypes of ergosterol biosynthesis mutants, and implications for microbial cell factories. Yeast 37, 27–44 (2020).

    CAS  PubMed  Google Scholar 

  31. Carolus, H. et al. Collateral sensitivity counteracts the evolution of antifungal drug resistance in Candida auris. Nat. Microbiol. 9, 2954–2969 (2024).

    CAS  PubMed  Google Scholar 

  32. Kim, J.-S., Lee, K.-T. & Bahn, Y.-S. Deciphering the regulatory mechanisms of the cAMP/protein kinase A pathway and their roles in the pathogenicity of Candida auris. Microbiol. Spectr. 11, e0215223 (2023).

    PubMed  Google Scholar 

  33. Després, P. C. et al. Asymmetrical dose responses shape the evolutionary trade-off between antifungal resistance and nutrient use. Nat. Ecol. Evol. 6, 1501–1515 (2022).

    PubMed  Google Scholar 

  34. Bédard, C. et al. Most azole antifungal resistance mutations in the drug target provide cross-resistance and carry no intrinsic fitness cost. Nat. Microbiol. (in the press).

  35. Durand, R. et al. Mutational landscape and molecular bases of echinocandin resistance. Preprint at bioRxiv https://doi.org/10.1101/2024.07.21.604487 (2024).

  36. Burrack, L. S., Todd, R. T., Soisangwan, N., Wiederhold, N. P. & Selmecki, A. Genomic diversity across Candida auris clinical isolates shapes rapid development of antifungal resistance in vitro and in vivo. mBio 13, e0084222 (2022).

    PubMed  Google Scholar 

  37. Tsai, H.-J. & Nelliat, A. A double-edged sword: aneuploidy is a prevalent strategy in fungal adaptation. Genes 10, 787 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sah, S. K., Hayes, J. J. & Rustchenko, E. The role of aneuploidy in the emergence of echinocandin resistance in human fungal pathogen Candida albicans. PLoS Pathog. 17, e1009564 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun, L. L. et al. Aneuploidy enables cross-tolerance to unrelated antifungal drugs in Candida parapsilosis. Front. Microbiol. 14, 1137083 (2023).

    PubMed  PubMed Central  Google Scholar 

  40. Sanglard, D., Ischer, F., Parkinson, T., Falconer, D. & Bille, J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob. Agents Chemother. 47, 2404–2412 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, Y. et al. ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection. Int. J. Oral Sci. 10, 9 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Eddouzi, J. et al. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob. Agents Chemother. 57, 3182–3193 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Burg, J. S. et al. Insig regulates HMG-CoA reductase by controlling enzyme phosphorylation in fission yeast. Cell Metab. 8, 522–531 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Theesfeld, C. L., Pourmand, D., Davis, T., Garza, R. M. & Hampton, R. Y. The sterol-sensing ___domain (SSD) directly mediates signal-regulated endoplasmic reticulum-associated degradation (ERAD) of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase isozyme Hmg2. J. Biol. Chem. 286, 26298–26307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rybak, J. M. et al. Mutations in hmg1, challenging the paradigm of clinical triazole resistance in Aspergillus fumigatus. mBio 10, e00437-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Rybak, J. M. et al. A secondary mechanism of action for triazole antifungals in Aspergillus fumigatus mediated by hmg1. Nat. Commun. 15, 3642 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, F. et al. The fitness costs and benefits of trisomy of each Candida albicans chromosome. Genetics 218, iyab056 (2021).

    PubMed  PubMed Central  Google Scholar 

  48. Torres, E. M. et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317, 916–924 (2007).

    CAS  PubMed  Google Scholar 

  49. Pavelka, N. et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468, 321–325 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Selmecki, A. M., Dulmage, K., Cowen, L. E., Anderson, J. B. & Berman, J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 5, e1000705 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Elias, D. et al. Erg6p is essential for antifungal drug resistance, plasma membrane properties and cell wall integrity in Candida glabrata. FEMS Yeast Res. 22, foac045 (2022).

    Google Scholar 

  52. Lima, S. L., Colombo, A. L. & de Almeida Junior, J. N. Fungal cell wall: emerging antifungals and drug resistance. Front. Microbiol. 10, 2573 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Seo, K., Akiyoshi, H. & Ohnishi, Y. Alteration of cell wall composition leads to amphotericin B resistance in Aspergillus flavus. Microbiol. Immunol. 43, 1017–1025 (1999).

    CAS  PubMed  Google Scholar 

  54. Mesa-Arango Ana, C. et al. Cell wall changes in amphotericin B-resistant strains from Candida tropicalis and relationship with the immune responses elicited by the host. Antimicrob. Agents Chemother. 60, 2326–2335 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Day, A. M., McNiff, M. M., Dantas, A. D. S., Gow, N. A. R. & Quinn, J. Hog1 regulates stress tolerance and virulence in the emerging fungal pathogen Candida auris. mSphere 3, e00506-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Bahn, Y.-S. et al. Genome-wide transcriptional profiling of the cyclic AMP-dependent signaling pathway during morphogenic transitions of Candida albicans. Eukaryot. Cell 6, 2376–2390 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, J.-S., Lee, K.-T., Lee, M. H., Cheong, E. & Bahn, Y.-S. Adenylyl cyclase and protein kinase A play redundant and distinct roles in growth, differentiation, antifungal drug resistance, and pathogenicity of Candida auris. mBio 12, e0272921 (2021).

    PubMed  Google Scholar 

  58. Wijnants, S., Vreys, J., Nysten, J. & Van Dijck, P. The Cdc25 and Ras1 proteins of Candida albicans influence epithelial toxicity in a niche-specific way. J. Fungi 9, 201 (2023).

    CAS  Google Scholar 

  59. Canton, M. et al. Reactive oxygen species in macrophages: sources and targets. Front. Immunol. 12, 734229 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Belenky, P., Camacho, D. & Collins, J. J. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep. 3, 350–358 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu, D. et al. Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog. 3, e92 (2007).

    PubMed  PubMed Central  Google Scholar 

  62. Alame Emane, A. K., Guo, X., Takiff, H. E. & Liu, S. Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis. Tuberculosis 129, 102091 (2021).

    CAS  PubMed  Google Scholar 

  63. Vincent, L. R. et al. In vivo-selected compensatory mutations restore the fitness cost of mosaic penA alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae. mBio 9, e01905-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Carolus, H. et al. Diagnostic allele-specific PCR for the identification of Candida auris clades. J. Fungi 7, 754 (2021).

    CAS  Google Scholar 

  65. Ghenu, A.-H., Marrec, L. & Bank, C. Challenges and pitfalls of inferring microbial growth rates from lab cultures. Front. Ecol. Evol. 11, 1313500 (2023).

    Google Scholar 

  66. Petzoldt, T. growthrates: Estimate Growth Rates from Experimental Data. R version 0.8.4; https://CRAN.R-project.org/package=growthrates (2022).

  67. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Third Edition CLSI Document M27-A3, Vol. 28 (Clinical and Laboratory Standards Institute, 2008).

  68. Boeke, J. D., LaCroute, F. & Fink, G. R. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197, 345–346 (1984).

    CAS  PubMed  Google Scholar 

  69. Foster, P. L. Methods for determining spontaneous mutation rates. Methods Enzymol. 409, 195–213 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Morio, F., Pagniez, F., Lacroix, C., Miegeville, M. & Le Pape, P. Amino acid substitutions in the Candida albicans sterol Δ5,6-desaturase (Erg3p) confer azole resistance: characterization of two novel mutants with impaired virulence. J. Antimicrob. Chemother. 67, 2131–2138 (2012).

    CAS  PubMed  Google Scholar 

  71. Müller, C., Binder, U., Bracher, F. & Giera, M. Antifungal drug testing by combining minimal inhibitory concentration testing with target identification by gas chromatography–mass spectrometry. Nat. Protoc. 12, 947–963 (2017).

    PubMed  Google Scholar 

  72. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).

  73. Van der Auwera, G. A. et al. From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10. 1–11.10. 33 (2013).

    PubMed  Google Scholar 

  74. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rhodes, J. et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg. Microbes Infect. 7, 43 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. R Development Core Team. R: A Language and Environment for Statistical Computing https://www.r-project.org (2020).

  77. Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. Dplyr: A Grammar of Data Manipulation; https://CRAN.R-project.org/package=dplyr (2023).

  78. Wickham, H. & Wickham, H. Data Analysis (Springer, 2016).

  79. Knaus, B. J. & Grunwald, N. J. vcfr: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53 (2017).

    CAS  PubMed  Google Scholar 

  80. Skrzypek, M. et al. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 45, D592–D596 (2017).

    CAS  PubMed  Google Scholar 

  81. Krahulec, J. et al. The ploidy determination of the biotechnologically important yeast Candida utilis. J. Appl. Genet. 61, 275–286 (2020).

    CAS  PubMed  Google Scholar 

  82. Baker Brachmann, C. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

    Google Scholar 

  83. Reuß, O., Vik, A., Kolter, R. & Morschhauser, J. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119–127 (2004).

    PubMed  Google Scholar 

  84. Regoes, R. R. et al. Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob. Agents Chemother. 48, 3670–3676 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ankomah, P. & Levin, B. R. Exploring the collaboration between antibiotics and the immune response in the treatment of acute, self-limiting infections. Proc. Natl Acad. Sci. USA 111, 8331–8338 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bekersky, I. et al. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob. Agents Chemother. 46, 828–833 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hünniger, K. et al. A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood. PLoS Comput. Biol. 10, e1003479 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. Prauße, M. T. et al. Predictive virtual infection modeling of fungal immune evasion in human whole blood. Front. Immunol. 9, 560 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Hecht, M., Bromberg, Y. & Rost, B. Better prediction of functional effects for sequence variants. BMC Genomics 16 (suppl. 8), S1 (2015).

Download references

Acknowledgements

This study was supported by the Fund for Scientific Research Flanders (FWO) under the framework of the Joint Programming Initiative on Antimicrobial Resistance (JPIAMR) fund (project CycleDrug) and by a C3 grant from the Industrial Research Fund of KU Leuven (C3/22/007) granted to P.V.D. H.C., D.S., S.J. and G.B. were supported by FWO PhD fellowships 11D7620N, 11J8122N, 11PRR24N and 1150023N, respectively. H.C. was also supported by a post-doctoral fellowship granted by KU Leuven Internal Funds (PDMT2/23/032). V.B. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 945352. The T.G. group acknowledges support from the Spanish Ministry of Science and Innovation (grant numbers PID2021-126067NB-I00, CPP2021-008552, PCI2022-135066-2 and PDC2022-133266-I00), cofounded by ERDF ‘A way of making Europe’, as well as support from the Catalan Research Agency (AGAUR) (grant number SGR01551), ‘La Caixa’ foundation (grant number LCF/PR/HR21/00737) and Instituto de Salud Carlos III (IMPACT grant IMP/00019 and CIBERINFEC CB21/13/00061-ISCIII-SGEFI/ERDF). P.v.d.B. acknowledges the support of KU Leuven start-up funding (GNM-E1097-STG/21/003). N.C.C. and C.A.C. were supported by the US National Institutes of Health grant 1RO1AI169066. We want to thank C. Pohl-Albertyn and K. Albertyn for providing us with the C. auris clade III strain from South Africa, and J. Parker for advice on sterol identification. We thank the US Centers for Disease Control and Prevention Mycotic Diseases Branch for sharing amphotericin resistance measurements.

Author information

Authors and Affiliations

Authors

Contributions

H.C. conceptualized, designed and supervised the study, provided funding, carried out experiments, analysed the data, and wrote the paper. D.S. carried out experiments, analysed the data and wrote the paper. G.B. designed and carried out mathematical modelling. P.S.-C., V.B. and N.C.C. aided in sequence data analysis. C.L.R. aided in phenotypic screening and sterol profiling, R.V. aided in sterol profiling and analysis, S.Y. aided in murine infections and treatment, S.P. aided in in vitro experimental evolution assays, S.J. aided in mutation rate analysis and P.V. aided in ploidy determination. S.W. provided conceptual insights, J.F.M. provided strains, and J.M.R. provided plasmids and aided in the design for strain construction. T.G., P.v.d.B., C.A.C. and P.V.D. provided funding and supervised the study. All authors edited and/or approved the paper.

Corresponding authors

Correspondence to Hans Carolus or Patrick Van Dijck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Jan-Ulrich Kreft, Rebecca Shapiro, Clement Tsui, Jianping Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Strain selection and genotyping.

a) Selection of in vitro and in vivo evolved isolates for genotyping based on resistance [RR(AUC) > 1] and susceptibility ranges (BDA MIC range 2 ≤ MIC < 16 µg/ml and ETEST® MIC range of 1.5 ≤ MIC < 32 µg/ml) observed in clinical AMB resistant C. auris strains. Pie chart shows proportions of strains containing ERG6, ERG11 and/or ERG3 variation in 50 selected strains (targeted sequencing and WGS). Details of all genotyped strains can be found in Supplementary Table 2 (Supplementary). b) Graphic representation of variations found in genes involved in ergosterol biosynthesis in selected WGS strains. Lollipop pictograms indicate mutations, indels or frameshifts (nucleotide deletion or insertion), brackets indicate larger deletions (more details see Table 1). A partial translocation in NCP1 in strain 14 is not displayed here but is shown separately in Supplementary Fig. 3 (Supplementary). Colors of lolipops indicate clade origin (legend see Fig. 1b,/c). Functional domains are annotated as GHMPK(N/C): galacto-homoserine, mevalonate and phosphomevalonate kinases (N/C)-terminal ___domain, SSD: sterol sensing ___domain, HMG-CoA R: HMG-CoA reductase catalytic ___domain, ACAT(N/C)D: acetyl-coenzyme A acetyltransferases (N/C)-terminal ___domain, FNOS: flavodoxin/NO synthase, BD: binding ___domain, FAH: fatty acid hydrοxylase, SAM: S-adenosyl-methionine, SMC: Sterol methyltransferase C-terminal, a: active site, b: conserved site, g: iron binding site (C465), d: SAM binding residues (129-135,152,153,179-181). c–f) Sequencing read coverage of Clade I (C), III (D), IV (E) and V (F) strains. Relative coverage is plotted per chromosome position based on a fully assembled genome of each clade as described in the Methods section. Columns represent the different chromosomes (Chr) and rows indicate different strains. Strain 1, 10, 18 and 30 are the parental strains of Clade I, III, IV and V respectively, indicated as ‘wt’ (wild type).

Source data

Extended Data Fig. 2 Azole susceptibility of WGS strains.

Table listing selected evolved strains (numbers) and their respective ERG-genotype (details see Table 1). The four major membrane sterol alteration types (1-4) are indicated by numbered boxes on the left, colored based on the typical sterol present for that type (see Fig. 2). The heatmap on the left shows relative growth (%) in different concentrations of fluconazole (FLU) and posaconazole (POS) in a BDA assay, averaged over 2 technical repeats. The heatmaps on the right show the relative (to parental strain) FLU and POS resistance (RR), based on AUC and MIC as measured by BDA. # detailed information about the partial translocation of NCP1 in strain 14 can be found in Supplementary Fig. 3 (Supplementary). *Chr6 contains ERG27. **Chr4 contains ERG6, ERG2, ERG7 and ERG12.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Supplementary Tables 1–7.

Reporting Summary

Source data

Source Data Figs. 1–5 and Extended Data Figs. 1 and 2

Source data for Figs 1–5 and Extended Data Figs. 1 and 2 can be found in the different tabs of this Excel sheet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carolus, H., Sofras, D., Boccarella, G. et al. Acquired amphotericin B resistance leads to fitness trade-offs that can be mitigated by compensatory evolution in Candida auris. Nat Microbiol 9, 3304–3320 (2024). https://doi.org/10.1038/s41564-024-01854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01854-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing