Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolutionary lability of a key innovation spurs rapid diversification

Abstract

Rates of lineage diversification vary considerably across the tree of life, often as a result of evolutionary innovations1,2,3,4,5. Although the ability to produce new traits can vary between clades and may drive ecological transitions6,7,8,9, the impact of differences in the pace at which innovations evolve at macroevolutionary scales has been overlooked. Complex teeth are one innovation that contributed to the evolutionary success of major vertebrate lineages10,11,12. Here we show that evolutionary lability of tooth complexity, but not complexity itself, spurs rapid diversification across ray-finned fishes. Speciation rates are five times higher when transitions between simple and complex teeth occur rapidly. We find that African cichlids are unique among all fishes; they are dominated by lineages that transition between simple and complex teeth at unparalleled rates. This innovation interacted with the ecological versatility of complex teeth to spur rapid adaptive radiations in lakes Malawi, Victoria and Barombi Mbo. The marked effect on diversification stems from the tight association of tooth complexity with microhabitat and diet. Our results show that phylogenetic variation in how innovations evolve can have a stronger effect on patterns of diversification than the innovation itself. Investigating the impact of innovations from this new perspective will probably implicate more traits in causing heterogeneous diversification rates across the tree of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolutionary dynamics of tooth complexity across ray-finned fishes.
Fig. 2: Rapid evolution of tooth complexity accelerates species diversification in African cichlids.
Fig. 3: State-dependent diet diversification in cichlids.

Similar content being viewed by others

Data availability

All the data generated and analysed in the current study, including tooth complexity classifications for 30,915 species of ray-finned fishes, are available via figshare at https://doi.org/10.6084/m9.figshare.25661859 (ref. 51).

Code availability

All RevBayes scripts used for phylogenetic analyses are available at https://github.com/npeoples/fish_tooth_complexity.

References

  1. Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  3. Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  4. Roelants, K. et al. Global patterns of diversification in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887–892 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  5. Miller, A. H., Stroud, J. T. & Losos, J. B. The ecology and evolution of key innovations. Trends Ecol. Evol. 38, 122–131 (2023).

    Article  PubMed  MATH  Google Scholar 

  6. Lovette, I. J., Bermingham, E. & Ricklefs, R. E. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc. R. Soc. Lond. B 269, 37–42 (2002).

    Article  Google Scholar 

  7. Martin, C. H. & Wainwright, P. C. Trophic novelty is linked to exceptional rates of morphological diversification in two adaptive radiations of Cyprinodon pupfish. Evolution 65, 2197–2212 (2011).

    Article  PubMed  MATH  Google Scholar 

  8. De Alencar, L. R. V., Martins, M., Burin, G. & Quental, T. B. Arboreality constrains morphological evolution but not species diversification in vipers. Proc. R. Soc. B 284, 20171775 (2017).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  9. Burns, M. D. & Bloom, D. D. Migratory lineages rapidly evolve larger body sizes than non-migratory relatives in ray-finned fishes. Proc. R. Soc. B 287, 20192615 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hunter, J. P. & Jernvall, J. The hypocone as a key innovation in mammalian evolution. Proc. Natl Acad. Sci. USA 92, 10718–10722 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  11. Lafuma, F., Corfe, I. J., Clavel, J. & Di-Poï, N. Multiple evolutionary origins and losses of tooth complexity in squamates. Nat. Commun. 12, 6001 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  12. Luo, Z.-X. Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  13. Ricklefs, R. E. Global variation in the diversification rate of passerine birds. Ecology 87, 2468–2478 (2006).

    Article  PubMed  MATH  Google Scholar 

  14. Liem, K. F. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22, 425–441 (1973).

    Article  MATH  Google Scholar 

  15. Hunter, J. P. Key innovations and the ecology of macroevolution. Trends Ecol. Evol. 13, 31–36 (1998).

    Article  CAS  PubMed  MATH  Google Scholar 

  16. Rabosky, D. L. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Phil. Trans. R. Soc. B 372, 20160417 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Miller, A. H. Ornithologie als Biologische Wissenschaft (Mayr, E. & Schuz, E., eds.) 84–88 (Carl Winter, 1949).

  18. Title, P. O. et al. The macroevolutionary singularity of snakes. Science 383, 918–923 (2024).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  19. Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  20. Carroll, S. B. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 1102–1109 (2001).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  21. Jackman, W. R. et al. Manipulation of Fgf and Bmp signaling in teleost fishes suggests potential pathways for the evolutionary origin of multicuspid teeth. Evol. Devel. 15, 107–118 (2013).

    Article  CAS  MATH  Google Scholar 

  22. Wainwright, P. C. & Longo, S. J. Functional innovations and the conquest of the oceans by acanthomorph fishes. Curr. Biol. 27, R550–R557 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Wainwright, P. C., McGee, M. D., Longo, S. J. & Hernandez, L. P. Origins, innovations, and diversification of suction feeding in vertebrates. Integr. Comp. Biol. 55, 134–145 (2015).

    Article  PubMed  Google Scholar 

  24. Tebbett, S. B., Goatley, C. H. R. & Bellwood, D. R. Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus. Coral Reefs 36, 803–813 (2017).

    Article  ADS  Google Scholar 

  25. Berkovitz, B. & Shellis, P. The Teeth of Non-Mammalian Vertebrates (Academic, 2017).

  26. Seehausen, O. & Wagner, C. E. Speciation in freshwater fishes. Annu. Rev. Ecol. Evol. Syst. 45, 621–651 (2014).

    Article  Google Scholar 

  27. Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  28. Yamanaka, A. Evolution and development of the mammalian multicuspid teeth. J. Oral Biosci. 64, 165–175 (2022).

    Article  PubMed  MATH  Google Scholar 

  29. Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).

    Article  ADS  PubMed  MATH  Google Scholar 

  30. Melo, B. F. et al. Accelerated diversification explains the exceptional species richness of tropical characoid fishes. Syst. Biol. 71, 78–92 (2021).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  31. McGee, M. D. et al. The ecological and genomic basis of explosive adaptive radiation. Nature 586, 75–79 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  32. Pigliucci, M. Is evolvability evolvable? Nat. Rev. Genet. 9, 75–82 (2008).

    Article  CAS  PubMed  MATH  Google Scholar 

  33. Davis, M. P., Midford, P. E. & Maddison, W. Exploring power and parameter estimation of the BiSSE method for analyzing species diversification. BMC Evol. Biol. 13, 38 (2013).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  34. Salzburger, W., Mack, T., Verheyen, E. & Meyer, A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol. Biol. 5, 17 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ronco, F. et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 589, 76–81 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  36. Meier, J. I. et al. Cycles of fusion and fission enabled rapid parallel adaptive radiations in African cichlids. Science 381, eade2833 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  37. Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seehausen, O. African cichlid fish: a model system in adaptive radiation research. Proc. R. Soc. B 273, 1987–1998 (2006).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  39. Greenwood, P. H. The Haplochromine Fishes of East African Lakes: Taxonomy, Biology and Evolution (Kraus, 1981).

  40. Crofts, S. B., Smith, S. M. & Anderson, P. S. L. Beyond description: the many facets of dental biomechanics. Integr. Comp. Biol. 60, 594–607 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  41. Ivory, S. J. et al. Environmental change explains cichlid adaptive radiation at Lake Malawi over the past 1.2 million years. Proc. Natl Acad. Sci. USA 113, 11895–11900 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lyons, R. P. et al. Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity. Proc. Natl Acad. Sci. USA 112, 15568–15573 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  43. Henao Diaz, L. F., Harmon, L. J., Sugawara, M. T. C., Miller, E. T. & Pennell, M. W. Macroevolutionary diversification rates show time dependency. Proc. Natl Acad. Sci. USA 116, 7403–7408 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Mihalitsis, M. & Bellwood, D. R. Functional groups in piscivorous fishes. Ecol. Evol. 11, 12765–12778 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Magalhaes, I. S., Lundsgaard-Hansen, B., Mwaiko, S. & Seehausen, O. Evolutionary divergence in replicate pairs of ecotypes of Lake Victoria cichlid fish. Evol. Ecol. Res. 14, 381–401 (2012).

    Google Scholar 

  46. Corn, K. A. et al. The rise of biting during the Cenozoic fueled reef fish body shape diversification. Proc. Natl Acad. Sci. USA 119, e2119828119 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  47. Price, S. A., Hopkins, S. S. B., Smith, K. K. & Roth, V. L. Tempo of trophic evolution and its impact on mammalian diversification. Proc. Natl Acad. Sci. USA 109, 7008–7012 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  48. Albertson, R. C. Genetic basis of adaptive shape differences in the cichlid head. J. Hered. 94, 291–301 (2003).

    Article  CAS  PubMed  MATH  Google Scholar 

  49. Duenser, A. et al. Developmental tinkering of gene regulation facilitated super rapid adaptive radiation. Preprint at bioRxiv https://doi.org/10.1101/2024.01.24.577063 (2024).

  50. Yamanaka, A. et al. Developmental process of the modern house shrew’s molars: implications for the evolution of the tribosphenic molar in Mesozoic mammals. Evolution https://doi.org/10.1093/evolut/qpad228 (2023).

  51. Peoples, N., Burns, M. D., Mihalitsis, M. & Wainwright, P. C. Evolutionary lability of a key innovation spurs rapid diversification. Figshare https://doi.org/10.6084/m9.figshare.25661859 (2024).

  52. Rabosky, D. L. No substitute for real data: a cautionary note on the use of phylogenies from birth–death polytomy resolvers for downstream comparative analyses. Evolution 69, 3207–3216 (2015).

    Article  PubMed  MATH  Google Scholar 

  53. Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Syst. Biol. 62, 725–737 (2013).

    Article  PubMed  Google Scholar 

  54. Boyko, J. D. & Beaulieu, J. M. Generalized hidden Markov models for phylogenetic comparative datasets. Methods Ecol. Evol. 12, 468–478 (2021).

    Article  MATH  Google Scholar 

  55. Fabreti, L. & Höhna, S. Convergence assessment for Bayesian phylogenetic analysis using MCMC simulation. Methods Ecol. Evol. 13, 77–90 (2022).

  56. Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinf. 7, 88 (2006).

    Article  Google Scholar 

  57. Tribble, C. M. et al. RevGadgets: an R package for visualizing Bayesian phylogenetic analyses from RevBayes. Methods Ecol. Evol. 13, 314–323 (2022).

    Article  MATH  Google Scholar 

  58. Rabosky, D. L. & Goldberg, E. E. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution 71, 1432–1442 (2017).

    Article  PubMed  MATH  Google Scholar 

  59. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  61. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  MATH  Google Scholar 

  62. Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).

    Article  PubMed  MATH  Google Scholar 

  63. Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    Article  PubMed  MATH  Google Scholar 

  64. Louca, S. & Pennell, M. W. A general and efficient algorithm for the likelihood of diversification and discrete-trait evolutionary models. Syst. Biol. 69, 545–556 (2020).

    Article  PubMed  MATH  Google Scholar 

  65. Helmstetter, A. J. et al. Trait-dependent diversification in angiosperms: patterns, models, and data. Ecol. Lett. 26, 640–657 (2023).

    Article  PubMed  MATH  Google Scholar 

  66. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article  CAS  PubMed  MATH  Google Scholar 

  67. Zenil-Ferguson, R., McEntee, J. P., Burleigh, J. G. & Duckworth, R. A. Linking ecological specialization to its macroevolutionary consequences: an example with passerine nest type. Syst. Biol. 72, 294–306 (2023).

    Article  PubMed  Google Scholar 

  68. Froese, R. & Pauly, D. FishBase www.fishbase.org (2024).

  69. Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank the members of the Wainwright Lab and L. Kaufman for support and discussions. Funding for this work was provided by the University of California, Davis, College of Biological Sciences and the University of California, Davis, Center for Population Biology.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized and designed by N.P. and P.C.W. N.P. collected the data on tooth complexity and diet and performed all analyses. Data interpretation was carried out by N.P. with support from P.C.W., M.M. and M.D.B. N.P. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Nick Peoples.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Sebastian Höhna and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The phylogenetic distribution of complex teeth and high lability across ray-finned fishes.

a, Maximum a posteriori stochastic character map of tooth complexity and its evolutionary lability for 11,508 species of ray-finned fishes under a HR2-ARD model. Lineages with simple teeth are light grey (low labiltiy) and dark blue (high lability); lineages with complex teeth are red (low lability) and gold (high lability). DR statistic values, a measure of species’ tip speciation rate, are plotted at the tips; longer bars indicate higher speciation rates. b, The proportion of lineages with complex teeth and high lability across families of ray-finned fishes that have at least one complex lineage (n = 31 families). The color of the points corresponds to family mean speciation rate, estimated using the DR statistic. The shape of the points represent habitat (freshwater, marine, both) and the size of the points are scaled by the total number of species. African and Neotropical cichlids are indicated separately to highlight the difference between these groups.

Extended Data Fig. 2 The evolution of tooth complexity and effect of lability are robust to assumptions on the prior transition rate in ray-finned fishes.

a, Maximum a posteriori ancestral state reconstruction of tooth complexity and its evolutionary lability across ray-finned fishes (n = 11,508 species) under the HR2-ARD model, under five different priors (50, 150, 200, 250, 400) for the total number of transitions. The insets for 250 and 400 highlight that rapid consecutive state changes on long branches inflate the transition rates in the “high lability” state under these priors. b, The total number of lineages with high lability and c, the proportion of lineages with high lability that are African cichlids under five different prior number of transitions. d-f, Simulated data shows no effect of lability on speciation rates. Distribution of FiSSE tip speciation rates for d, low lability and e, high lability over 100 ancestral state reconstructions simulated under the observed HR2-ARD model. Median rates are indicated with blue lines. f, Distribution of FiSSE two-tailed p-values for 100 simulated character histories; the red line marks the significance level of 0.05. g-j, Transition rates are robust to assumptions on the prior number of transitions. Posterior distribution of estimated rates for g, low lability gain, h, low lability loss, i, high lability gain and j, high lability loss under the HR2-ARD model for five priors (50, 150, 200, 250, 400) on the number of transitions. k-p, Convergence of the HR2-ARD model. k, Posterior probability distribution of two replicate MCMC runs of the HR2-ARD model. l, Histogram of Kolmogorov-Smirnov (KS) scores for model parameters. The grey dotted line marks the threshold for the KS test of 0.0921 (α = 0.01, ESS > 625), indicating that the model parameters were drawn from the same distribution for both replicate runs. Posterior distribution of transition rates across replicate MCMC runs for m, low lability gain, n, low lability loss, o, high lability gain, and p, high lability loss.

Extended Data Fig. 3 Convergence and prior sensitivity analyses for the HR4-ARD model in African cichlids.

Posterior distribution of estimated transition rates under the HR4-ER model for three different priors (50, 100, 150) on the total number of transitions; a, very low lability, b, low lability, c, high lability, and d, very high lability. e, Posterior probability distribution of four replicate MCMC runs of the HR4-ER model; two chains ran for 50,000 generations and two chains ran for 500,000 generations. f, Histogram of Kolmogorov-Smirnov (KS) scores for model parameters. The grey dotted line marks the threshold for the KS test of 0.0921 (α = 0.01, ESS > 625), indicating that the model parameters were drawn from the same distribution for all replicate runs. Running the chain longer resulted in the same posterior probability distribution and transition rate estimates despite ESS scores <625 for some parameters for 50,000 generations. Posterior distribution of transition rates across replicate MCMC runs for g, very low lability h, low lability i, high lability and j, very high lability.

Extended Data Fig. 4 Evolutionary lability of tooth complexity increases net diversification rates across four background rate regimes in African cichlids.

Maximum a posteriori (MAP) ancestral state reconstruction of evolutionary lability for African cichlids (n = 1,069 species) under the MuHiSSE-4 model. Lineages in a, hidden state A, b, hidden state B, c, hidden state C, and d, hidden state D are highlighted separately. Selected clades are labeled for each hidden state. The posterior distribution of net diversification rates are reported for each level of lability, within each hidden state.

Extended Data Fig. 5 Convergence of the MuHiSSE-2 and MuHiSSE-4 models, fit across African cichlids.

a, Posterior probability distribution of two replicate MCMC runs of the MuHiSSE-2 model. b, Histogram of Kolmogorov-Smirnov (KS) scores for MuHiSSE-2 model parameters. The grey dotted line marks the threshold for the KS test of 0.0921 (α = 0.01, ESS > 625), indicating that the model parameters were drawn from the same distribution for both replicate runs. Two parameters fall just outside this threshold. c, Posterior probability distribution of two replicate MCMC runs of the MuHiSSE-4 model. d, Histogram of Kolmogorov-Smirnov (KS) scores for MuHiSSE-4 model parameters. The grey dotted line marks the threshold for the KS test of 0.0921 (α = 0.01, ESS > 625), indicating that the model parameters were drawn from the same distribution for both replicate runs.

Extended Data Fig. 6 Speciation rates for African cichlids under varying levels of lability and six relative extinction scenarios, estimated under a MuHiSSE-4 model.

Posterior distributions of speciation rates for four levels of lability across four hidden states (A-D). Rates were estimated under six different relative extinction scenarios by setting lower bounds on the extinction rate (µ).

Extended Data Fig. 7 Net diversification rates for African cichlids under varying levels of lability and six relative extinction scenarios, estimated under a MuHiSSE-4 model.

Posterior distributions of net diversification rates, measured as speciation (λ) minus extinction (µ), for four levels of lability across four hidden states (A-D). Rates were estimated under six different relative extinction scenarios by setting lower bounds on the extinction rate (µ).

Extended Data Fig. 8 Evolutionary lability of tooth complexity increases net diversification rates across two background rate regimes in African cichlids.

Maximum a posteriori (MAP) ancestral state reconstruction of evolutionary lability for African cichlids (n = 1,069 species) under the MuHiSSE-2 model. Lineages in a, hidden state A and b, hidden state B are highlighted separately. Selected clades are labeled for each hidden state. The posterior distribution of net diversification rates are reported for each level of lability, within each hidden state.

Extended Data Fig. 9 Speciation and net diversification rates for African cichlids under varying levels of lability and six relative extinction scenarios, estimated under a MuHiSSE-2 model.

a, Posterior distributions of net diversification rates (speciation – extinction) for two levels of lability across two hidden states (A, B). b, Posterior distributions of corresponding speciation rates (λ). Rates were estimated under six different relative extinction scenarios by setting lower bounds on the extinction rate (µ).

Supplementary information

Supplementary Information

Supplementary Discussion, Tables 1–12 and References.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peoples, N., Burns, M.D., Mihalitsis, M. et al. Evolutionary lability of a key innovation spurs rapid diversification. Nature 639, 962–967 (2025). https://doi.org/10.1038/s41586-025-08612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-025-08612-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing