Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lemborexant ameliorates tau-mediated sleep loss and neurodegeneration in males in a mouse model of tauopathy

Abstract

Sleep disturbances are associated with the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and primary tauopathies. Here we demonstrate that administration of the dual orexin receptor antagonist lemborexant in the P301S/E4 mouse model of tauopathy improves tau-associated impairments in sleep–wake behavior. It also protects against chronic reactive microgliosis and brain atrophy in male P301S/E4 mice by preventing abnormal phosphorylation of tau. These neuroprotective effects in males were not observed after administration of the nonorexinergic drug zolpidem that similarly promoted nonrapid eye movement sleep. Furthermore, both genetic ablation of orexin receptor 2 and lemborexant treatment reduced wakefulness and decreased seeding and spreading of phosphorylated tau in the brain of wild-type mice. These findings raise the therapeutic potential of targeting sleep by orexin receptor antagonism to prevent abnormal tau phosphorylation and limit tau-induced damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Zolpidem and lemborexant treatment increase NREM sleep in male P301S/E4 mice.
Fig. 2: OXR antagonism is partially neuroprotective in P301S/E4 mice.
Fig. 3: Blocking OXR signaling alters microglial reactivity in male P301S/E4 mice.
Fig. 4: Lemborexant alters synaptic receptor and GPCR ligand binding activity pathways.
Fig. 5: Lemborexant treatment reduces hyperphosphorylated pathological tau in male P301S/E4 mice.
Fig. 6: OXR antagonism reduces cAMP/PKA-mediated phosphorylation of tau in P301S/E4 male mice.
Fig. 7: Pharmacological or genetic lack of OXR signaling decreases tau seeding and cAMP/PKA-mediated phosphorylation of tau.

Similar content being viewed by others

Data availability

Numerical source data files are available as supplementary data files. RNA-seq data are publicly available from the Gene Expression Omnibus under accession code GSE283736. Source data are provided with this paper.

References

  1. Bubu, O. M. et al. Obstructive sleep apnea, cognition and Alzheimer’s disease: a systematic review integrating three decades of multidisciplinary research. Sleep. Med. Rev. 50, 101250 (2020).

    Article  PubMed  Google Scholar 

  2. Shi, L. et al. Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep. Med. Rev. 40, 4–16 (2018).

    Article  PubMed  Google Scholar 

  3. Lew, C. H., Petersen, C., Neylan, T. C. & Grinberg, L. T. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer’s disease. Sleep. Med. Rev. 60, 101541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eser, R. A. et al. Selective vulnerability of brainstem nuclei in distinct tauopathies: a postmortem study. J. Neuropathol. Exp. Neurol. 77, 149–161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oh, J. et al. Profound degeneration of wake-promoting neurons in Alzheimer’s disease. Alzheimers Dement. 15, 1253–1263 (2019).

    Article  PubMed  Google Scholar 

  6. Parhizkar, S. & Holtzman, D. M. The night’s watch: exploring how sleep protects against neurodegeneration. Neuron 113, 817–837 (2025).

    Article  CAS  PubMed  Google Scholar 

  7. Malpetti, M., La Joie, R. & Rabinovici, G. D. Tau beats amyloid in predicting brain atrophy in Alzheimer disease: implications for prognosis and clinical trials. J. Nucl. Med. 63, 830–832 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lucey, B. P. et al. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci. Transl. Med. 11, eaau6550 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holth, J. K., Mahan, T. E., Robinson, G. O., Rocha, A. & Holtzman, D. M. Altered sleep and EEG power in the P301S Tau transgenic mouse model. Ann. Clin. Transl. Neurol. 4, 180–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holth, J. K. et al. The sleep–wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 363, 880–884 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu, Y. et al. Chronic sleep disruption advances the temporal progression of tauopathy in P301S mutant mice. J. Neurosci. 38, 10255–10270 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Verster, J. C. et al. Residual effects of middle-of-the-night administration of zaleplon and zolpidem on driving ability, memory functions, and psychomotor performance. J. Clin. Psychopharmacol. 22, 576–583 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Morgan, P. T., Kehne, J. H., Sprenger, K. J. & Malison, R. T. Retrograde effects of triazolam and zolpidem on sleep-dependent motor learning in humans. J. Sleep. Res. 19, 157–164 (2010).

    Article  PubMed  Google Scholar 

  14. Robbins, R. et al. Sleep medication use and incident dementia in a nationally representative sample of older adults in the US. Sleep. Med. 79, 183–189 (2021).

    Article  PubMed  Google Scholar 

  15. Donnelly, K., Bracchi, R., Hewitt, J., Routledge, P. A. & Carter, B. Benzodiazepines, Z-drugs and the risk of hip fracture: a systematic review and meta-analysis. PLoS ONE 12, e0174730 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Herring, W. J. et al. Polysomnographic assessment of suvorexant in patients with probable Alzheimer’s disease dementia and insomnia: a randomized trial. Alzheimers Dement. 16, 541–551 (2020).

    Article  PubMed  Google Scholar 

  19. Moline, M. et al. Safety and efficacy of lemborexant in patients with irregular sleep–wake rhythm disorder and Alzheimer’s disease dementia: results from a phase 2 randomized clinical trial. J. Prev. Alzheimers Dis. 8, 7–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Lucey, B. P. et al. Suvorexant acutely decreases tau phosphorylation and Aβ in the human CNS. Ann. Neurol. 94, 27–40 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beuckmann, C. T., Ueno, T., Nakagawa, M., Suzuki, M. & Akasofu, S. Preclinical in vivo characterization of lemborexant (E2006), a novel dual orexin receptor antagonist for sleep/wake regulation. Sleep 42, zsz076 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Murphy, P. et al. Lemborexant, a dual orexin receptor antagonist (DORA) for the treatment of insomnia disorder: results from a Bayesian, adaptive, randomized, double-blind, placebo-controlled study. J. Clin. Sleep. Med. 13, 1289–1299 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yardley, J. et al. Long-term effectiveness and safety of lemborexant in adults with insomnia disorder: results from a phase 3 randomized clinical trial. Sleep. Med. 80, 333–342 (2021).

    Article  PubMed  Google Scholar 

  24. Kang, J. E. et al. Amyloid-β dynamics are regulated by orexin and the sleep–wake cycle. Science 326, 1005–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roh, J. H. et al. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J. Exp. Med. 211, 2487–2496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Josephs, K. A. et al. β-Amyloid burden is not associated with rates of brain atrophy. Ann. Neurol. 63, 204–212 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Shi, Y. et al. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J. Exp. Med. 216, 2546–2561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mancuso, R. et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain 142, 3243–3264 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Keenan, R. J. et al. Differential sleep/wake response and sex differences following acute suvorexant, MK-1064 and zolpidem administration in the rTg4510 mouse model of tauopathy. Br. J. Pharmacol. 179, 3403–3417 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krasemann, S. et al. The TREM2–APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Yamada, K. et al. Neuronal activity regulates extracellular tau in vivo. J. Exp. Med. 211, 387–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, J. W. et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 19, 1085–1092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahmed, Z. et al. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 127, 667–683 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jicha, G. A. et al. cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease. J. Neurosci. 19, 7486–7494 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beuckmann, C. T. et al. In vitro and in silico characterization of lemborexant (E2006), a novel dual orexin receptor antagonist. J. Pharmacol. Exp. Ther. 362, 287–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Guo, J. L. et al. Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice. J. Exp. Med. 213, 2635–2654 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Walsh, C. M. et al. Sleepless night and day, the plight of progressive supranuclear palsy. Sleep 40, zsx154 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. McCurry, S. M. et al. Characteristics of sleep disturbance in community-dwelling Alzheimer’s disease patients. J. Geriatr. Psychiatry Neurol. 12, 53–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Keenan, R. J. et al. Orexin 2 receptor antagonism sex‐dependently improves sleep/wakefulness and cognitive performance in tau transgenic mice. Br. J. Pharmacol. 181, 87–106 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Gratuze, M. et al. TREM2-independent microgliosis promotes tau-mediated neurodegeneration in the presence of ApoE4. Neuron 111, 202–219 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, Y. U. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat. Neurosci. 22, 1771–1781 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stowell, R. D. et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat. Neurosci. 22, 1782–1792 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Small, K. M., Brown, K. M., Forbes, S. L. & Liggett, S. B. Polymorphic deletion of three intracellular acidic residues of the α2B-adrenergic receptor decreases G protein-coupled receptor kinase-mediated phosphorylation and desensitization. J. Biol. Chem. 276, 4917–4922 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Ijiro, T. et al. Effect of rovatirelin, a novel thyrotropin-releasing hormone analog, on the central noradrenergic system. Eur. J. Pharmacol. 761, 413–422 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Leonard, C. S. & Kukkonen, J. P. Orexin/hypocretin receptor signalling: a functional perspective. Br. J. Pharmacol. 171, 294–313 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Kukkonen, J. P. & Leonard, C. S. Orexin/hypocretin receptor signalling cascades. Br. J. Pharmacol. 171, 314–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Chidambaram, H. & Chinnathambi, S. G-Protein coupled receptors and tau-different roles in Alzheimer’s disease. Neuroscience 438, 198–214 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Scott, C. W. et al. Phosphorylation of recombinant tau by cAMP-dependent protein kinase. Identification of phosphorylation sites and effect on microtubule assembly. J. Biol. Chem. 268, 1166–1173 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Illenberger, S. et al. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer’s disease. Mol. Biol. Cell 9, 1495–1512 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, F. et al. PKA modulates GSK‐3β‐ and cdk5‐catalyzed phosphorylation of tau in site‐ and kinase‐specific manners. FEBS Lett. 580, 6269–6274 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo, J., Phan, T. X., Yang, Y., Garelick, M. G. & Storm, D. R. Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep: implications for REM sleep and memory consolidation. J. Neurosci. 33, 6460–6468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Vecsey, C. G. et al. Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 461, 1122–1125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huynh, T.-P. V. et al. Lack of hepatic apoE does not influence early Aβ deposition: observations from a new APOE knock-in model. Mol. Neurodegener. 14, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Willie, J. T. et al. Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice. Neuron 38, 715–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Barger, Z., Frye, C. G., Liu, D., Dan, Y. & Bouchard, K. E. Robust, automated sleep scoring by a compact neural network with distributional shift correction. PLoS ONE 14, e0224642 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yaghouby, F., Donohue, K. D., O’Hara, B. F. & Sunderam, S. Noninvasive dissection of mouse sleep using a piezoelectric motion sensor. J. Neurosci. Methods 259, 90–100 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Eisai for providing lemborexant. We would like to thank the Genome Technology Access Center in the Department of Genetics at Washington University School of Medicine for help with genomic analysis. This study was supported by the National Institutes of Health (grants P01NS074969, RF1NS090934 and RF1AG061776 to D.M.H.), the Freedom Together Foundation (to D.M.H.), the Alzheimer’s Association (AARF-21-850865 to S.P.) and the COBRAS Feldman Fellowship (to S.P.).

Author information

Authors and Affiliations

Authors

Contributions

S.P. and D.M.H. designed the study. S.P. and X.B. orally gavaged the mice and collected and analyzed the Piezosleep data. S.P., X.B., C.L., G.G. and J.R.S. perfused and collected samples. N.R., W.C., S.P., E.C.L. and M.W. collected and analyzed all EEG/EMG data. Y.C. and S.S. performed the AD-tau extract preparation and intrahippocampal injections. E.T. performed the RNA-sequencing analysis. S.P., X.B., G.G., M.K. and E.F. performed and analyzed the immunohistochemistry, imaging, RNA and protein extraction, qPCR, immunoblotting and ELISA experiments. M.M. and X.B. performed and analyzed the NFL SIMOA data. S.P., X.B., G.G. and M.E.B. maintained the mouse colony. C.M.Y. collected and analyzed all behavioral experiments. S.P. wrote the draft. D.M.H. reviewed and edited the paper. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to David M. Holtzman.

Ethics declarations

Competing interests

D.M.H. is an inventor on a patent licensed by Washington University to C2N Diagnostics on the therapeutic use of anti-tau antibodies; cofounded and is on the scientific advisory board of C2N Diagnostics; is on the scientific advisory board of Denali, Genentech, Cajal Neuroscience and Switch Therapeutics and consults for Pfizer and Roche. The other authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Li Gan, Tara Spires-Jones and Sigrid Veasey for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Lemborexant influences sleep–wake behavior but does not influence reactive microglia or astroglia in non-tau transgenic E4 mice.

a, EEG analyses of percentage time spent in NREM sleep (nE4 = 10 mice/group, nP301S/E4 = 8 mice/group, two-way ANOVA, Fisher’s LSD test), REM sleep (nE4 = 10 mice per group, nP301S/E4 = 8 mice/group, two-way ANOVA, Fisher’s LSD test) and awake (nE4 = 10 mice/group, nP301S/E4 = 8 mice/group; two-way ANOVA and Fisher’s LSD test) in Veh- and Lem-treated E4 and P301S/E4 male mice at ZT13. b, EEG analyses of percentage sleep in the first 4 h after gavage (n = 4 mice/group; two-tailed t test) as well as percentage time spent in NREM sleep (n = 4 mice/group; one-way ANOVA and Dunnett’s post hoc test), REM sleep (n = 4 mice/group; Kruskal–Wallis test) and awake (n = 4 mice/group; one-way ANOVA and Dunnett’s post hoc test) in female P301S/E4 mice. c, Representative confocal images of Iba1 (green), Cd68 (red) and Tmem119 (yellow) stained reactive microglia in Ent/Pcx of Veh or Lem ZT13 treated E4 male mice. Scale bar, 20 μm. dg, Quantifications as labeled (Iba1: nVeh = 15, nLem ZT13 = 16, two-tailed t test; Cd68: nVeh = 14, nLem ZT13 = 18, two-tailed t test, p = 0.9721; Tmem119: nVeh = 17, nLem ZT13 = 20, two-tailed t test; Gfap: nVeh = 16, nLem ZT13 = 17, two-tailed t test). For detailed statistical information, see Supplementary Table 1. Data represent mean ± s.e.m. of biological replicates; *P < 0.05, *P < 0.01, ***P< 0.001, and ****P<0.0001.

Source data

Extended Data Fig. 2 Behavioral assessment across different treatment groups in P301S/E4 mice.

a, Percentage freezing quantified during tone–shock/pairing (males: nVeh = 19, nZol ZT13 = 14, nLem ZT3 = 12, nLem ZT13 = 13, two-way ANOVA, Dunnett’s post hoc test; females: nVeh = 17, nLem ZT3 = 15, nLem ZT13 = 9, two-way ANOVA, Dunnett’s post hoc test); b, contextual conditioning (males: nVeh = 19, nZol ZT13 = 14, nLem ZT3 = 12, nLem ZT13 = 13, two-way ANOVA, Dunnett’s post hoc test; females: nVeh = 17, nLem ZT3 = 15, nLem ZT13 = 9, two-way ANOVA, Dunnett’s post hoc test); c, auditory cue conditioning (males: nVeh = 19, nZol ZT13 = 14, nLem ZT3 = 9, nLem ZT13 = 13, two-way ANOVA, Dunnett’s post hoc test; females: nVeh = 17, nLem ZT3 = 15, nLem ZT13 = 9, two-way ANOVA, Dunnett’s post hoc test). d, Percentage alternation rate quantified in Y-maze alternation test (males: nVeh = 19, nZol ZT13 = 14, nLem ZT3 = 12, nLem ZT13 = 13, one-way ANOVA, Dunnett’s post hoc test; females: nVeh = 17, nLem ZT3 = 14, nLem ZT13 = 9, one-way ANOVA). For detailed statistical information, see Supplementary Table 1. Data represent mean ± s.e.m. in biological replicates. *P < 0.05, and ** P< 0.01.

Source data

Extended Data Fig. 3 Orexin receptor antagonism does not influence cAMP/PKA-mediated phosphorylation of tau in P301S/E4 female mice.

a, DAG (nVeh = 15, nLem ZT3 = 15, nLem ZT13 = 12; Kruskal–Wallis and Dunn’s post hoc test); b, cAMP (nVeh = 14, nLem ZT3 = 16, nLem ZT13 = 16; one-way ANOVA and Dunnett’s post hoc test) ELISAs of RIPA-soluble Ent/Pcx extracts. c, Immunoblots of RIPA-soluble Ent/Pcx brain extracts from Veh- and Lem-treated female P301S/E4 mice (n = 3 mice/group). dh, Quantification of the western blot intensity of protein kinases and cell signaling proteins (for d, e and g—nVeh = 9, nLem ZT3 = 9, nLem ZT13 = 8; for f—nVeh = 9, nLem ZT3 = 9, nLem ZT13 = 7; for h—nVeh = 9, nLem ZT3 = 8, nLem ZT13 = 8). All proteins were first normalized to Gapdh, and the ratio of phosphorylated to their corresponding unphosphorylated form was then calculated. PHF1 was normalized to Gapdh. (d—Kruskal-Wallis test and Dunn’s post hoc test; e—one-way ANOVA, Dunnett’s post hoc test; f—one-way ANOVA, Dunnett’s post hoc test; g—Kruskal–Wallis test and Dunn’s post hoc test; h—one-way ANOVA, Dunnett’s post hoc test). For detailed statistical information, see Supplementary Table 1. Data represent mean ± s.e.m. of biological replicates. *P< 0.05, and ****P < 0.0001.

Source data

Extended Data Fig. 4 Gene expression levels of orexin-mediated GPCR signaling molecules.

ai, Gene expression levels of orexin receptors and downstream effectors in naïve male P301S/E4 mice compared at ZT3 and ZT13 (n = 6 mice/group; ad, fi, two-tailed t test; e—Mann–Whitney test), and (jr) Veh- and Lem-treated male mice (j—nVeh = 9, nLem ZT3 = 7, nLem ZT13 = 7; one-way ANOVA and Dunnett’s post hoc test; k—nVeh = 9, nLem ZT3 = 7, nLem ZT13 = 7; Kruskal–Wallis test and Dunn’s post hoc test; l—nVeh = 8, nLem ZT3 = 7, nLem ZT13 = 7; Kruskal–Wallis test and Dunn’s post hoc test; m—nVeh = 8, nLem ZT3 = 7, nLem ZT13 = 7; one-way ANOVA and Dunnett’s post hoc test; n—nVeh = 9, nLem ZT3 = 7, nLem ZT13 = 7; Kruskal–Wallis test and Dunn’s post hoc test; o—nVeh = 9, nLem ZT3 = 7, nLem ZT13 = 7; one-way ANOVA and Dunnett’s post hoc test; p—nVeh = 9, nLem ZT3 = 7, nLem ZT13 = 7; one-way ANOVA, p = 0.5522; Dunnett’s post hoc test; q—nVeh = 9, nLem ZT3 = 7, nLem ZT13 = 7; Kruskal–Wallis and Dunn’s post hoc test; r—nVeh = 9, nLem ZT3 = 7, nLem ZT13 = 7; one-way ANOVA and Dunnett’s post hoc test). For detailed statistical information, see Supplementary Table 1. Data represent mean ± s.e.m. of biological replicates.

Source data

Extended Data Fig. 5 Pharmacological or genetic lack of orexin receptor signaling alters sleep–wake behavior and decreases tau propagation.

a, Sleep–wake behavior quantified by percentage sleep (two-way ANOVA and Sidak’s post hoc test), sleep bout lengths (two-way ANOVA and Sidak’s post hoc test) and wake bout lengths (two-way ANOVA and Sidak’s post hoc test) during the light and dark phase at 7.5 M (nOXR2-WT = 8, nOXR2-WT Lem = 7, nOXR2-KO = 8) male mice. b, Sleep–wake behavior quantified by percentage sleep (two-way ANOVA and Sidak’s post hoc test), sleep bout lengths (two-way ANOVA and Sidak’s post hoc test) and wake bout lengths (two-way ANOVA and Sidak’s post hoc test) during the light and dark phase at 9.5 M (nOXR2-WT = 8, nOXR2-WT Lem = 7, nOXR2-KO = 8) in male mice. c, Percentage sleep in dark phase compared between mice at 7.5 M and 9.5 M (both timepoints: nOXR2-WT = 8, nOXR2-WT Lem = 7, nOXR2-KO = 8; two-way ANOVA and Bonferroni’s post hoc test). d, Wake bout lengths compared between mice at 7.5 M and 9.5 M during dark phase (both timepoints: nOXR2-WT = 8, nOXR2-WT Lem = 7, nOXR2-KO = 8; two-way ANOVA and Bonferroni’s post hoc test). e, Representative images of PG5-stained anterior (ant; top) and posterior (pos; bottom) Hpc. Scale bar, 500 μm. f, Percentage PG5-covered dentate gyrus quantified anterior (nOXR2-WT = 8, nOXR2-WT Lem = 7, nOXR2-KO = 8 male mice; one-way ANOVA and Dunnett’s post hoc test); g, posterior to the seeding site (one-way ANOVA and Dunnett’s post hoc test). h, Representative images of AT8-stained anterior and posterior Hpc. Scale bar, 500 μm. i, Percentage AT8-covered dentate gyrus quantified anterior (nOXR2-WT = 8, nOXR2-WT Lem = 7, nOXR2-KO = 8 male mice; one-way ANOVA and Dunnett’s post hoc test); j, posterior to the seeding site (Kruskal–Wallis test and Dunn’s post hoc test). For detailed statistical information, see Supplementary Table 1. Data represent mean ± s.e.m. in biological replicates. *P< 0.05, **P< 0.01, ***P<0.001, and ****P < 0.0001.

Source data

Supplementary information

Reporting Summary

Supplementary Table 1

Detailed statistical data for Figs. 1–7 and Extended Data Figs. 1–5.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parhizkar, S., Bao, X., Chen, W. et al. Lemborexant ameliorates tau-mediated sleep loss and neurodegeneration in males in a mouse model of tauopathy. Nat Neurosci (2025). https://doi.org/10.1038/s41593-025-01966-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41593-025-01966-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing