Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Sonoafterglow nanoprobes for deep-tissue imaging of peroxynitrite

Abstract

Optical imaging of tumor biomarkers provides key diagnostic information about tumor status. Light-induced afterglow (photoafterglow) imaging provides a higher signal to background ratio than typical fluorescence imaging; however, both modalities face challenges in detecting biomarkers in deep tissues owing to the limited penetration depth of light. Here we provide instructions for synthesizing ultrasound-induced afterglow (sonoafterglow) nanoprobes (SNAP) for the deep-tissue imaging of peroxynitrite (ONOO), a biomarker specific for M1 macrophages and a proinflammatory tumor microenvironment. SNAPs are coassembled from initiators, afterglow substrates and amphiphilic polymers via the film rehydration method, a generic and facile approach that enables their rapid nanoconstruction (in 10 min), with high reproducibility, while also providing control over the nanoprobe concentration, which overcomes limitations of traditional nanoconstruction methods including solvent injection and emulsion–solvent evaporation. Following ultrasound stimulation, SNAPs emit sonoafterglow with bright near-infrared emission (peaking at 780 nm), with a long half-life (~2 min), and can be detected through biological tissues twice deeper than photoafterglow. We further develop SNAP into SNAP-M, which can be switched on only in the presence of ONOO, allowing the real-time in vivo imaging of a proinflammatory tumor microenvironment at an unprecedented tissue depth for optical imaging. This Protocol can be implemented by users with expertise in material science in 1 week for nanoprobe construction and characterization, 1–2 week for cell assays and 3–4 weeks for animal experiments.

Key points

  • The Protocol uses the film rehydration method for the formation of a thin film containing the sonoafterglow initiator, substrate and amphiphilic stabilizer, which are rehydrated to a monodispersed nanoparticle solution. The nanoparticles produced emit long-lasting luminescence following stimulation with ultrasound for the detection of deep-tissue peroxynitrite.

  • Alternative methods are time-consuming and suffer from interbatch variations, whereas the film rehydration method is efficient, reproducible and applicable to various solvents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The construction of SNAP.
Fig. 2: The sonoafterglow imaging in vitro.
Fig. 3: The development of ONOO-activatable SNAP-M.
Fig. 4: The sonoafterglow tumor imaging in vivo.
Fig. 5: Photographs showing the key steps of SNAP construction.
Fig. 6: The characterization of SNAP.
Fig. 7: Sonoafterglow detection of ONOO in vitro.
Fig. 8: The sonoafterglow imaging of intratumoral ONOO in vivo.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available within the article and its supplementary information or from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K. & Nie, S. M. Cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Jiang, Y. Y. & Pu, K. Y. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 121, 13086–13131 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Miao, Q. Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, Y. Y. et al. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 10, 2064 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xie, C., Zhen, X., Miao, Q. Q., Lyu, Y. & Pu, K. Y. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 30, 1801331 (2018).

    Article  Google Scholar 

  7. Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumors and grafted cells. Nat. Mater. 13, 418–426 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Wei, X. et al. Highly bright near-infrared chemiluminescent probes for cancer imaging and laparotomy. Angew. Chem. Int. Ed. Engl. 62, e202213791 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Lin, Y. et al. Highly photoreactive semiconducting polymers with cascade intramolecular singlet oxygen and energy transfer for cancer-specific afterglow theranostics. J. Am. Chem. Soc. 147, 2597–2606 (2025).

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, J., Zhao, L., An, W. & Miao, Q. Recent advances and design strategies for organic afterglow agents to enhance autofluorescence-free imaging performance. Chem. Soc. Rev. 54, 1429–1452 (2025).

    Article  CAS  PubMed  Google Scholar 

  11. Qu, R., Jiang, X. & Zhen, X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem. Soc. Rev. 53, 10970–11003 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Canavese, G. et al. Nanoparticle-assisted ultrasound: a special focus on sonodynamic therapy against cancer. Chem. Eng. J. 340, 155–172 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ouyang, J. et al. Ultrasound mediated therapy: recent progress and challenges in nanoscience. Nano Today 35, 100949 (2020).

    Article  CAS  Google Scholar 

  14. Zhang, Z. et al. Ultrasound-chargeable persistent luminescence nanoparticles to generate self-propelled motion and photothermal/NO therapy for synergistic tumor treatment. ACS Nano 17, 16089–16106 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Mohammadpour, R., Dobrovolskaia, M. A., Cheney, D. L., Greish, K. F. & Ghandehari, H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 144, 112–132 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soenen, S. J. et al. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6, 446–465 (2011).

    Article  CAS  Google Scholar 

  17. Xu, C. & Pu, K. Illuminating cancer with sonoafterglow. Nat. Photon. 18, 301–302 (2024).

    Article  CAS  Google Scholar 

  18. Szabo, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662–680 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng, D. et al. Selective visualization of the endogenous peroxynitrite in an inflamed mouse model by a mitochondria-targetable two-photon ratiometric fluorescent probe. J. Am. Chem. Soc. 139, 285–292 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, L. et al. Fluorescent probe for the imaging of superoxide and peroxynitrite during drug-induced liver injury. Chem. Sci. 12, 3921–3928 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, W. et al. Activatable two-photon near-infrared fluorescent probe tailored toward peroxynitrite in vivo imaging in tumors. Anal. Chem. 92, 13305–13312 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, C. et al. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases. J. Am. Chem. Soc. 144, 3429–3441 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Gao, Z. et al. An activatable near-infrared afterglow theranostic prodrug with self-sustainable magnification effect of immunogenic cell death. Angew. Chem. Int. Ed. Engl. 61, e202209793 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, C. et al. Nanoparticles with ultrasound-induced afterglow luminescence for tumor-specific theranostics. Nat. Biomed. Eng. 7, 298–312 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Ni, X. et al. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19, 318–330 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, C., Zhang, X., Gao, Z., Feng, G. & Ding, D. Preparation of AIEgen-based near-infrared afterglow luminescence nanoprobes for tumor imaging and image-guided tumor resection. Nat. Protoc. 19, 1–27 (2024).

  29. Jiang, Y. et al. Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 15, 2124 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, L. et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun. 11, 446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dasgupta, A., Sofias, A. M., Kiessling, F. & Lammers, T. Nanoparticle delivery to tumors: from EPR and ATR mechanisms to clinical impact. Nat. Rev. Bioeng. 2, 714–716 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang, Y., Huang, J., Xu, C. & Pu, K. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat. Commun. 12, 742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, C., Jiang, Y., Han, Y., Pu, K. & Zhang, R. A polymer multicellular nanoengager for synergistic NIR-II photothermal immunotherapy. Adv. Mater. 33, e2008061 (2021).

    Article  PubMed  Google Scholar 

  34. Cavallaro, G. et al. PHEA–PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions. Int. J. Pharm. 495, 719–727 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Schaeffel, D. et al. Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation. Nano Lett. 12, 6012–6017 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Huang, J. et al. Molecular radio afterglow probes for cancer radiodynamic theranostics. Nat. Mater. 22, 1421–1429 (2023).

    Article  PubMed  Google Scholar 

  37. Xu, C. et al. A cascade X-ray energy converting approach toward radio-afterglow cancer theranostics. Nat. Nanotechnol. 20, 286–295 (2025).

    Article  CAS  PubMed  Google Scholar 

  38. Wells, P. N. Review: absorption and dispersion of ultrasound in biological tissue. Ultrasound Med. Biol. 1, 369–376 (1975).

    Article  CAS  PubMed  Google Scholar 

  39. Xu, C. et al. Activatable sonoafterglow nanoprobes for T-cell imaging. Adv. Mater. 35, e2211651 (2023).

    Article  PubMed  Google Scholar 

  40. Wei, X. et al. Leveraging long-distance singlet-oxygen transfer for bienzyme-locked afterglow imaging of intratumoral granule enzymes. J. Am. Chem. Soc. 146, 17393–17403 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, W. et al. Ratiometric afterglow luminescent imaging of matrix metalloproteinase-2 activity via an energy diversion process. Angew. Chem. Int. Ed. Engl. 63, e202404244 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Y. et al. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Nat. Commun. 13, 2216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, F. et al. Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nat. Commun. 9, 4141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Graf, N. et al. α(V)β(3) integrin-targeted PLGA–PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano 6, 4530–4539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rao, L., Yuan, Y., Shen, X., Yu, G. & Chen, X. Designing nanotheranostics with machine learning. Nat. Nanotechnol. 19, 1769–1781 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Adir, O. et al. Integrating artificial intelligence and nanotechnology for precision cancer meldicine. Adv. Mater. 32, e1901989 (2020).

    Article  PubMed  Google Scholar 

  47. Cheong, J. et al. Engineered nanoparticles for clinical assays. Nat. Rev. Bioeng. 2, 887–905 (2024).

    Article  CAS  Google Scholar 

  48. Xu, M. et al. Sonodynamic cytokine nanocomplexes with specific stimulation towards effector T cell for combination cancer immunotherapy. Angew. Chem. Int. Ed. Engl. 62, e202308362 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Yu, J. et al. Polymeric STING pro-agonists for tumor-specific sonodynamic immunotherapy. Angew. Chem. Int. Ed. Engl. 62, e202307272 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. He, S. et al. A semiconducting iron-chelating nano-immunomodulator for specific and sensitized sono-metallo-immunotherapy of cancer. Angew. Chem. Int. Ed. Engl. 62, e202310178 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, F. et al. Principles and applications of sono-optogenetics. Adv. Drug Deliv. Rev. 194, 114711 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, J., Jiang, Y., Li, J., Huang, J. & Pu, K. Molecular chemiluminescent probes with a very long near-infrared emission wavelength for in vivo imaging. Angew. Chem. Int. Ed. Engl. 60, 3999–4003 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Su, X. et al. Interferon-gamma regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat. Immunol. 16, 838–849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.P. thanks the Singapore National Research Foundation (grant no. NRF-NRFI07-2021-0005) and the Singapore Ministry of Education Academic Research Fund Tier2 (grant nos. MOE-T2EP30220-0010 and MOE-T2EP30221-0004) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

K.P. and C.X. conceived and developed the Protocol. C.X. conducted in vitro and in vivo assays and drafted the manuscript. J.H. conducted the synthesis. K.P. contributed to the discussion and manuscript review. All authors contributed to the writing of this manuscript.

Corresponding author

Correspondence to Kanyi Pu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Hak Soo Choi, Cyrille Richard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Xu, C. et al. Nat. Biomed. Eng. 7, 298–312 (2023): https://doi.org/10.1038/s41551-022-00978-z

Xu, C. et al. Adv. Mater. 35, e2211651 (2023): https://doi.org/10.1002/adma.202211651

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and methods

Reporting Summary

Source data

Source Data Fig. 6

Statistical Source data

Source Data Fig. 7

Statistical Source data

Source Data Fig. 8

Statistical Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Huang, J. & Pu, K. Sonoafterglow nanoprobes for deep-tissue imaging of peroxynitrite. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01202-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing