Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heterogeneous patterns of brain atrophy in schizophrenia localize to a common brain network

Abstract

Understanding the neuroanatomy of schizophrenia remains elusive due to heterogeneous findings across neuroimaging studies. Here we investigated whether patterns of brain atrophy associated with schizophrenia would localize to a common brain network using a coordinate network mapping meta-analysis approach. Utilizing the human connectome as a wiring diagram, we identified a connectivity pattern, a schizophrenia network, uniting heterogeneous results from 90 published studies of atrophy in schizophrenia (total n > 8,000). This network was specific to schizophrenia, differentiating it from atrophy in individuals at high risk for psychosis (n = 3,038), normal aging (n = 4,195), neurodegenerative disorders (n = 3,707) and other psychiatric conditions (n = 3,432). The network was also stable with disease progression and across different clusters of schizophrenia symptoms. Patterns of brain atrophy in schizophrenia were negatively correlated with lesions linked to psychosis-related thought processes in an independent cohort (n = 181). Our results propose a unique, stable, and unified schizophrenia network, addressing a significant portion of the heterogeneity observed in previous atrophy studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneity analyses.
Fig. 2: Mapping atrophy coordinates in schizophrenia to brain networks.
Fig. 3: Mapping atrophy patterns in schizophrenia to a common brain network.
Fig. 4: Comparing schizophrenia subgroups: spatial permutation tests (two-sided).
Fig. 5: Schizophrenia versus high-risk individuals.
Fig. 6: Lesion-based validation.

Similar content being viewed by others

Data availability

All atrophy coordinates used in this work are derived from previously published studies, as referenced in previous meta-analyses23,49,50. The functional connectivity data utilized in this study can be accessed online through the Harvard Dataverse at https://doi.org/10.7910/DVN/ILXIKS. For inquiries related to the Vietnam Head Injury Study, please contact J. Grafman at [email protected]. The final schizophrenia network map is available via NeuroVault (https://neurovault.org/images/889224/).

Code availability

The processing pipeline for functional connectivity data can be found at https://github.com/bchcohenlab/BIDS_to_CBIG_fMRI_Preproc2016. The statistical analyses were conducted using MATLAB R2022b. MATLAB code for spatial permutation testing can be accessed via Zenodo at https://zenodo.org/records/13851081 (ref. 54).

References

  1. Vigo, D., Thornicroft, G. & Atun, R. Estimating the true global burden of mental illness. Lancet Psychiatry. 3, 171–178 (2016).

    Article  PubMed  Google Scholar 

  2. Keshavan, M. S. et al. Neuroimaging in schizophrenia. Neuroimaging Clin. N. Am. 30, 73–83 (2020).

    Article  PubMed  Google Scholar 

  3. Kraguljac, N. V. & Lahti, A. C. Neuroimaging as a window into the pathophysiological mechanisms of schizophrenia. Front. Psychiatry. 12, 613764 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dabiri, M. et al. Neuroimaging in schizophrenia: a review article. Front. Neurosci. 16, 1042814 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ortiz-Gil, J. et al. Neural correlates of cognitive impairment in schizophrenia. Br. J. Psychiatry. 199, 202–210 (2011).

    Article  PubMed  Google Scholar 

  6. Pomarol-Clotet, E. et al. Medial prefrontal cortex pathology in schizophrenia as revealed by convergent findings from multimodal imaging. Mol. Psychiatry 15, 823–830 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chang, M. et al. Correction: voxel-based morphometry in individuals at genetic high risk for schizophrenia and patients with schizophrenia during their first episode of psychosis. PLoS ONE. 12, e0170146 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Delvecchio, G. et al. Brain anatomy of symptom stratification in schizophrenia: a voxel-based morphometry study. Nord. J. Psychiatry. 71, 348–354 (2017).

    Article  PubMed  Google Scholar 

  9. Huang, P. et al. Decreased bilateral thalamic gray matter volume in first-episode schizophrenia with prominent hallucinatory symptoms: a volumetric MRI study. Sci. Rep. 5, 14505 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hu, M. L. et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci. Bull. 33, 73–84 (2017).

    Article  PubMed  Google Scholar 

  11. Menon, V., Palaniyappan, L. & Supekar, K. Integrative brain network and salience models of psychopathology and cognitive dysfunction in schizophrenia. Biol. Psychiatry 94, 108–120 (2023).

    Article  PubMed  Google Scholar 

  12. van Erp, T. G. M. et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol. Psychiatry 84, 644–654 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Erp, T. G. et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 21, 585 (2016).

    Article  PubMed  Google Scholar 

  14. Cash, R. F. H., Müller, V. I., Fitzgerald, P. B., Eickhoff, S. B. & Zalesky, A. Altered brain activity in unipolar depression unveiled using connectomics. Nat. Ment. Health. 1, 174–185 (2023).

    Article  Google Scholar 

  15. Siddiqi, S. H., Khosravani, S., Rolston, J. D. & Fox, M. D. The future of brain circuit-targeted therapeutics. Neuropsychopharmacology 49, 179–188 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Darby, R. R., Joutsa, J. & Fox, M. D. Network localization of heterogeneous neuroimaging findings. Brain 142, 70–79 (2019).

    Article  PubMed  Google Scholar 

  17. Zhukovsky, P. et al. Coordinate-based network mapping of brain structure in major depressive disorder in younger and older adults: a systematic review and meta-analysis. Am. J. Psychiatry. 178, 1119–1128 (2021).

    Article  PubMed  Google Scholar 

  18. Stubbs et al. Heterogeneous neuroimaging findings across substance use disorders localize to a common brain network. Nat. Ment. Health. 1, 772–781 (2023).

    Article  Google Scholar 

  19. Weil, R. S., Hsu, J. K., Darby, R. R., Soussand, L. & Fox, M. D. Neuroimaging in Parkinson’s disease dementia: connecting the dots. Brain Commun. 1, fcz006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Burke, M. J. et al. Mapping migraine to a common brain network. Brain 143, 541–553 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Taylor, J. J. et al. A transdiagnostic network for psychiatric illness derived from atrophy and lesions. Nat. Hum. Behav. 7, 420–429 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F. & Fox, P. T. Activation likelihood estimation meta-analysis revisited. Neuroimage 59, 2349–2361 (2012).

    Article  PubMed  Google Scholar 

  23. Liloia, D. et al. Updating and characterizing neuroanatomical markers in high-risk subjects, recently diagnosed and chronic patients with schizophrenia: a revised coordinate-based meta-analysis. Neurosci. Biobehav. Rev. 123, 83–103 (2021).

    Article  PubMed  Google Scholar 

  24. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  25. Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).

    Article  Google Scholar 

  26. Siddiqi, S. H. et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nat. Hum. Behav. 5, 1707–1716 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361–375 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Raymont, V., Salazar, A. M., Krueger, F. & Grafman, J. “Studying injured minds”—the Vietnam Head Injury Study and 40 years of brain injury research. Front. Neurol. 2, 15 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn (American Psychiatric Association, 1994).

  31. Arkin, S. C. et al. Deficits and compensation: attentional control cortical networks in schizophrenia. Neuroimage Clin. 27, 102348 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jimenez, A. M. et al. Abnormal ventral and dorsal attention network activity during single and dual target detection in schizophrenia. Front. Psychol. 7, 323 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Keyvanfard, F., Schmid, A. K. & Nasiraei-Moghaddam, A. Functional connectivity alterations of within and between networks in schizophrenia: A retrospective study. Basic Clin. Neurosci. 14, 397–409 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sheffield, J. M. & Barch, D. M. Cognition and resting-state functional connectivity in schizophrenia. Neurosci. Biobehav. Rev. 61, 108–120 (2016).

    Article  PubMed  Google Scholar 

  35. van den Heuvel, M. P. & Fornito, A. Brain networks in schizophrenia. Neuropsychol. Rev. 24, 32–48 (2014).

    Article  PubMed  Google Scholar 

  36. Dong, D. et al. Shared abnormality of white matter integrity in schizophrenia and bipolar disorder: a comparative voxel-based meta-analysis. Schizophr. Res. 185, 41–50 (2017).

    Article  PubMed  Google Scholar 

  37. Kim, N. Y. et al. Lesions causing hallucinations localize to one common brain network. Mol. Psychiatry 26, 1299–1309 (2021).

    Article  PubMed  Google Scholar 

  38. Darby, R. R., Laganiere, S., Pascual-Leone, A., Prasad, S. & Fox, M. D. Finding the imposter: brain connectivity of lesions causing delusional misidentifications. Brain 140, 497–507 (2017).

    Article  PubMed  Google Scholar 

  39. Kraepelin, E. Dementia Praecox and Paraphrenia (Chicago Medical Book Co., 1919).

  40. Silbersweig, D. & Loscalzo, J. Precision psychiatry meets network medicine: network psychiatry. JAMA Psychiatry 74, 665–666 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wood, S. J. et al. Progressive changes in the development toward schizophrenia: studies in subjects at increased symptomatic risk. Schizophr. Bull. 34, 322–329 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Collins, M. A. et al. Accelerated cortical thinning precedes and predicts conversion to psychosis: the NAPLS3 longitudinal study of youth at clinical high-risk. Mol. Psychiatry 28, 1182–1189 (2023).

    Article  PubMed  Google Scholar 

  43. Fornito, A. et al. Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biol. Psychiatry 64, 758–765 (2008).

    Article  PubMed  Google Scholar 

  44. Takayanagi, Y. et al. Reduced thickness of the anterior cingulate cortex in individuals with an at-risk mental state who later develop psychosis. Schizophr. Bull. 43, 907–913 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Galovic, M. et al. Progressive cortical thinning in patients with focal epilepsy. JAMA Neurol. 76, 1230–1239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lacadie, C. M., Fulbright, R. K., Rajeevan, N., Constable, R. T. & Papademetris, X. More accurate Talairach coordinates for neuroimaging using non-linear registration. Neuroimage. 42, 717–725 (2008).

    Article  PubMed  Google Scholar 

  47. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. Neuroimage 92, 381–397 (2014).

    Article  PubMed  Google Scholar 

  48. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44, 83–98 (2009).

    Article  PubMed  Google Scholar 

  49. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Minkova, L. et al. Gray matter asymmetries in aging and neurodegeneration: a review and meta-analysis. Hum. Brain. Mapp. 38, 5890–5904 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. The MathWorks Inc. MATLAB version: 9.13.0 (R2022b) https://www.mathworks.com (2022).

  52. Weinstein, S. M. et al. A simple permutation-based test of intermodal correspondence. Hum. Brain. Mapp. 42, 5175–5187 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Siddiqi, S. H. et al. Lesion network localization of depression in multiple sclerosis. Nat. Ment. Health 1, 36–44 (2023b).

    Article  Google Scholar 

  54. Makhlouf, A. & Siddiqi, S. Heterogenous patterns of brain atrophy in schizophrenia localize to a common brain network. Zenodo https://zenodo.org/records/13851081 (2024).

Download references

Acknowledgments

We express our gratitude to the participants who volunteered for the studies analyzed in this paper. We thank A. Cohen, M. Ferguson, C. Lin, and L. Soussand for their efforts in developing the computational methods used in this study. We also thank P. Flynn and L. Sterina for administrative support. This work was supported by the following sources: Harvard Medical School (Dupont Warren Fellowship Award) and the NIH (grant no. R01MH113929) (A.T.M.); Canadian Institutes of Health Research Vanier Scholarship and a University of British Columbia Friedman Award for Scholars in Health (J.L.S.); Harvard Medical School (Dupont Warren Fellowship Award and Livingston Award), Brain and Behavior Research Foundation Young Investigator Grant (no. 31081), Sidney R. Baer, Jr. Foundation, Baszucki Brain Research Fund, and the NIH (grant nos K23MH129829 and R01MH113929) (J.J.T.); the Nancy Lurie Marks Foundation, the Kaye Family Research Endowment, the Baszucki Brain Research Fund and the NIH (grant nos. R01MH113929, R21MH126271, R56AG069086, R01MH115949, and R01AG060987) (M.D.F.); the NIH (grant nos. K23MH121657, R21MH126271, and R01MH136248), the Brain and Behavior Research Foundation Young Investigator Grant, the Baszucki Brain Research Fund and the Department of Veterans Affairs (grant no. I01CX002293) (S.H.S.).

Author information

Authors and Affiliations

Authors

Contributions

A.T.M., D.S., M.D.F., and S.H.S. conceived and designed the study. A.T.M., W.D., J.L.S., M.D.F., and S.H.S. designed the analytical procedures. A.T.M., W.D., J.L.S., J.J.T., and D.L. preprocessed and prepared the data for analysis. A.T.M., W.D., J.L.S., J.J.T., and S.H.S. performed the neuroimaging and statistical analyses. D.L., J.J.T., J.L.S., and J.G. contributed the data. A.T.M. and S.H.S. wrote the paper, with input from all authors.

Corresponding author

Correspondence to Ahmed T. Makhlouf.

Ethics declarations

Competing interests

S.H.S. holds intellectual property related to using individualized resting-state network mapping for targeting TMS, filed in 2016, which has not generated royalties and is unrelated to this work. S.H.S. also serves as a scientific consultant for Magnus Medical, has received investigator-initiated research funding from Neuronetics (2019) and Brainsway (2022), received speaking fees from Brainsway (2021) and Otsuka (for PsychU.org, 2021) and holds shares in Brainsway (publicly traded) and Magnus Medical (privately held). M.D.F. is a scientific consultant for Magnus Medical and owns separate intellectual property related to using functional connectivity to target TMS for depression, filed in 2013, which has not generated royalties and is unrelated to this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Richard Dear, Golia Shafiei, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Tables 1–7, and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhlouf, A.T., Drew, W., Stubbs, J.L. et al. Heterogeneous patterns of brain atrophy in schizophrenia localize to a common brain network. Nat. Mental Health 3, 19–30 (2025). https://doi.org/10.1038/s44220-024-00348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00348-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing