Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy

Abstract

The success of messenger RNA therapeutics largely depends on the availability of delivery systems that enable the safe, effective and stable translation of genetic material into functional proteins. Here we show that extracellular vesicles (EVs) produced via cellular nanoporation from human dermal fibroblasts, and encapsulating mRNA encoding for extracellular-matrix α1 type-I collagen (COL1A1) induced the formation of collagen-protein grafts and reduced wrinkle formation in the collagen-depleted dermal tissue of mice with photoaged skin. We also show that the intradermal delivery of the mRNA-loaded EVs via a microneedle array led to the prolonged and more uniform synthesis and replacement of collagen in the dermis of the animals. The intradermal delivery of EV-based COL1A1 mRNA may make for an effective protein-replacement therapy for the treatment of photoaged skin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CNP generates large quantities of EVs loaded with COL1A1 mRNA.
Fig. 2: In vivo kinetics of COL1A1-EV mRNA delivery and protein formation in murine skin.
Fig. 3: COL1A1-EV mRNA delivery reduces dermal wrinkles in a UV-irradiation photoaging model.
Fig. 4: Histologic analysis demonstrates collagen replacement in the dermis of photoaged mice treated with COL1A1-EV mRNA.
Fig. 5: A microneedle delivery system for improved EV distribution in tissue.
Fig. 6: COL1A1-EV delivery via COL1A1-EV microneedle improves long-term treatment of photoaged skin.
Fig. 7: COL1A1-EV mRNA delivery via COL1A1-EV MN results in long-term protein replacement in skin.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Source data for the figures are available from figshare at https://figshare.com/articles/dataset/SD_FIGS_xlsx/21514641. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request.

References

  1. Sahin, U., Kariko, K. & Tureci, O. mRNA-based therapeutics–developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    CAS  PubMed  Google Scholar 

  2. Muik, A. et al. Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human sera. Science 375, 678–680 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kowalski, P. S., Rudra, A., Miao, L. & Anderson, D. G. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710–728 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, C., Zhang, Y. & Dong, Y. Lipid nanoparticle-mRNA formulations for therapeutic applications. Acc. Chem. Res. 54, 4283–4293 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Qiu, M., Li, Y., Bloomer, H. & Xu, Q. Developing biodegradable lipid nanoparticles for intracellular mRNA delivery and genome editing. Acc. Chem. Res. 54, 4001–4011 (2021).

    CAS  PubMed  Google Scholar 

  6. Lokugamage, M. P. et al. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv. Mater. 32, e1904905 (2020).

    PubMed  Google Scholar 

  7. Szebeni, J. et al. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat. Nanotechnol. 17, 337–346 (2022).

    CAS  PubMed  Google Scholar 

  8. Moghimi, S. M. Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines. Mol. Ther. 29, 898–900 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    CAS  PubMed  Google Scholar 

  10. Cheng, L. & Hill, A. F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 21, 379–399 (2022).

    CAS  PubMed  Google Scholar 

  11. de Jong, O. G. et al. Drug delivery with extracellular vesicles: from imagination to innovation. Acc. Chem. Res. 52, 1761–1770 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    CAS  PubMed  Google Scholar 

  13. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    PubMed  Google Scholar 

  14. Yang, Z. et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 4, 69–83 (2020).

    CAS  PubMed  Google Scholar 

  15. Sharma, M. R., Werth, B. & Werth, V. P. Animal models of acute photodamage: comparisons of anatomic, cellular and molecular responses in C57BL/6J, SKH1 and Balb/c mice. Photochem. Photobiol. 87, 690–698 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Varani, J. et al. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am. J. Pathol. 168, 1861–1868 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fisher, G. J. W. Z. Pathophysiology of premature skin aging induced by ultraviolet light. N. Engl. J. Med. 337, 1419–1428 (1997).

    CAS  PubMed  Google Scholar 

  18. Buranasudja, V., Rani, D., Malla, A., Kobtrakul, K. & Vimolmangkang, S. Insights into antioxidant activities and anti-skin-aging potential of callus extract from Centella asiatica (L.). Sci. Rep. 11, 13459 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wada, N., Sakamoto, T. & Matsugo, S. Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants 4, 603–646 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiong, Z. M. et al. Ultraviolet radiation protection potentials of methylene blue for human skin and coral reef health. Sci. Rep. 11, 10871 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bielli, A. et al. Cellular retinoic acid binding protein-II expression and its potential role in skin aging. Aging 11, 1619–1632 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Song, H., Zhang, S., Zhang, L. & Li, B. Effect of orally administered collagen peptides from bovine bone on skin aging in chronologically aged mice. Nutrients 9, 1209 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Jeong, S. et al. Anti-wrinkle benefits of peptides complex stimulating skin basement membrane proteins expression. Int. J. Mol. Sci. 21, 73 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Lee, A. Y. Skin pigmentation abnormalities and their possible relationship with skin aging. Int. J. Mol. Sci. 22, 3727 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, J. H. et al. Comparative evaluation of the effectiveness of novel hyaluronic acid-polynucleotide complex dermal filler. Sci. Rep. 10, 5127 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Urdiales-Galvez, F., Martin-Sanchez, S., Maiz-Jimenez, M., Castellano-Miralla, A. & Lionetti-Leone, L. Concomitant use of hyaluronic acid and laser in facial rejuvenation. Aesthetic Plast. Surg. 43, 1061–1070 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Fisher, G. J., Varani, J. & Voorhees, J. J. Looking older: fibroblast collapse and therapeutic implications. Arch. Dermatol. 144, 666–672 (2008).

    PubMed  PubMed Central  Google Scholar 

  28. Quan, T. et al. Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo. J. Invest. Dermatol. 133, 658–667 (2013).

    CAS  PubMed  Google Scholar 

  29. Shakouri, R. et al. In vivo study of the effects of a portable cold plasma device and vitamin C for skin rejuvenation. Sci. Rep. 11, 21915 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. de Araujo, R., Lobo, M., Trindade, K., Silva, D. F. & Pereira, N. Fibroblast growth factors: a controlling mechanism of skin aging. Skin Pharmacol. Physiol. 32, 275–282 (2019).

    PubMed  Google Scholar 

  31. Cole, M. A., Quan, T., Voorhees, J. J. & Fisher, G. J. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J. Cell Commun. Signal. 12, 35–43 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Shi, J. et al. A review on electroporation-based intracellular delivery. Molecules 23, 3044 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Todorova, K. & Mandinova, A. Novel approaches for managing aged skin and nonmelanoma skin cancer. Adv. Drug Deliv. Rev. 153, 18–27 (2020).

    CAS  PubMed  Google Scholar 

  34. Choi, J. S. et al. Functional recovery in photo-damaged human dermal fibroblasts by human adipose-derived stem cell extracellular vesicles. J. Extracell. Vesicles 8, 1565885 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Alpermann, H. & Vogel, H. G. Effect of repeated ultraviolet irradiation on skin of hairless mice. Arch. Dermatol. Res. 262, 15–25 (1978).

    CAS  PubMed  Google Scholar 

  36. Hu, S. et al. Needle-free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin photoaging. ACS Nano 13, 11273–11282 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, J. D., Kim, M., Yang, H., Lee, K. & Jung, H. Droplet-born air blowing: novel dissolving microneedle fabrication. J. Control. Release 170, 430–436 (2013).

    CAS  PubMed  Google Scholar 

  38. Abd, E. et al. Skin models for the testing of transdermal drugs. Clin. Pharmacol. 8, 163–176 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng, T. et al. Plasma exosomes spread and cluster around β-amyloid plaques in an animal model of Alzheimer’s disease. Front. Aging Neurosci. 9, 12 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Li, Z. et al. Exosome-based Ldlr gene therapy for familial hypercholesterolemia in a mouse model. Theranostics 11, 2953–2965 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, H. et al. In vivo real-time imaging of extracellular vesicles in liver regeneration via aggregation-induced emission luminogens. ACS Nano 13, 3522–3533 (2019).

    CAS  PubMed  Google Scholar 

  42. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020).

    PubMed  PubMed Central  Google Scholar 

  44. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    CAS  PubMed  Google Scholar 

  45. Zhang, Z. et al. COL1A1: a potential therapeutic target for colorectal cancer expressing wild-type or mutant KRAS. Int. J. Oncol. 53, 1869–1880 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu, J. et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl Acad. Sci. USA 112, 8260–8265 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, T. et al. Microneedle-mediated biomimetic cyclodextrin metal organic frameworks for active targeting and treatment of hypertrophic scars. ACS Nano 15, 20087–20104 (2021).

    CAS  PubMed  Google Scholar 

  48. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

  49. van Haasteren, J., Li, J., Scheideler, O. J., Murthy, N. & Schaffer, D. V. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 38, 845–855 (2020).

    PubMed  Google Scholar 

  50. Mullard, A. Gene therapy community grapples with toxicity issues, as pipeline matures. Nat. Rev. Drug Discov. 20, 804–805 (2021).

    CAS  PubMed  Google Scholar 

  51. Shi, D. et al. To PEGylate or not to PEGylate: immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev. 180, 114079 (2022).

    CAS  PubMed  Google Scholar 

  52. Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 49, 6288–6308 (2010).

    CAS  PubMed  Google Scholar 

  53. Qian, X. et al. Immunosuppressive effects of mesenchymal stem cells-derived exosomes. Stem Cell Rev. Rep. 17, 411–427 (2021).

    CAS  PubMed  Google Scholar 

  54. Kim, S. H. et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol. 174, 6440–6448 (2005).

    CAS  PubMed  Google Scholar 

  55. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Peking, P., Koller, U. & Murauer, E. M. Functional therapies for cutaneous wound repair in epidermolysis bullosa. Adv. Drug Deliv. Rev. 129, 330–343 (2018).

    CAS  PubMed  Google Scholar 

  57. Vader, P., Mol, E. A., Pasterkamp, G. & Schiffelers, R. M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 106, 148–156 (2016).

    CAS  PubMed  Google Scholar 

  58. Born, L. J., Harmon, J. W. & Jay, S. M. Therapeutic potential of extracellular vesicle-associated long noncoding RNA. Bioeng. Transl. Med. 5, e10172 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pi, F. et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. 13, 82–89 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Wogan of the Division of Radiation Oncology, MD Anderson Cancer Center, for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.S.L. and F.L. conceived the work; A.S.L., W.J., F.L., Z.Y. and B.Y.S.K. supervised the research; A.S.L., J.S., L.J.L. and K.J.K. developed the technology; A.S.L., Y.Y., Y.T., F.L., W.J., Z.Y., L.T. and B.Y.S.K. designed the experiments; A.S.L., L.J.L., Z.Y., Y.T., Y.Y., W.J., F.L., B.Y.S.K., K.J.K., J.S., B.S., K.H., D.L., T.G., L.T., W.-J.L. and E.B. provided intellectual input; A.S.L., L.J.L., Z.Y., W.J., J.S., S.D., E.B. and B.Y.S.K. wrote the manuscript, with input from all authors; Y.Y., Y.T., J.S., K.J.K., Y.T., A.P.E., J.C., C.-L.C., W.-H.H. Y.L., Z.L., Y.Z., H.Z., X.L., Y.W. and J.H. conducted experiments; Y.Y., Y.T., Z.Y. and A.P.E. prepared figures and videos.

Corresponding authors

Correspondence to Feng Lan, Betty Y. S. Kim or Andrew S. Lee.

Ethics declarations

Competing interests

A.S.L. and L.J.L. are consultants and shareholders of Spot Biosystems, Ltd. J.S. and K.J.K are employees of Spot Biosystems, Ltd.

Peer review

Peer review information

Nature Biomedical Engineering thanks Sun Hwa Kim, Chuanbin Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 In vitro delivery of COL1A1 mRNA-containing EVs.

a, Fluorescence images of serum-starved nHDFs treated with COL1A1-GFP EVs and protein translated from delivered COL1A1-GFP mRNA after 48 h. Scale bar, 100 µm. b, Fluorescence intensity of cells treated with COL1A1-EVs (n = 3 for all groups, ***P < 0.001 Control vs COL1A1-EVs) in 48 h. c, RT-qPCR shows higher collagen mRNA transcript levels after in vitro delivery of COL1A1 mRNA from EVs (n = 3 for all groups, ***P < 0.001 Control vs COL1A1-EVs) in 48 h. d, Western blots show elevated COL1A1 protein in treated fibroblasts (n = 3 for all groups, **P = 0.001 Control vs COL1A1-EVs).e, Pro-collagen I collected from supernatant and detected by ELISA (n = 3 for all groups, ***P < 0.001 Control vs COL1A1-EVs) in 48 h. All data are from three independent experiments and are presented as means ± SEM; two-sided Student’s t tests were used for the comparisons in (b–e).

Extended Data Fig. 2 Skin plaster assessment of dorsal skin after COL1A1-EV treatment.

a, Microscopic observations of dorsal skin and skin replicas. Scale bar, 5 mm. b, Mean wrinkle depth in skin replicas (n = 4 for all groups, ※※※P < 0.001 COL1A1-EVs vs Saline; **P = 0.0025 COL1A1-LNPs vs Saline; +++P < 0.001 COL1A1-EVs vs COL1A1-LNPs). c, Mean wrinkle length analysed on skin replicas (n = 4 for all groups, #P = 0.0203 Unloaded EVs vs Saline; *P = 0.0405 COL1A1-LNPs vs Saline; ※※※P < 0.001 COL1A1-EVs vs Saline; ++P = 0.0015 COL1A1-EVs vs COL1A1-LNPs).All data are from three independent experiments and are presented as means ± SEM. One-way analysis of variance (ANOVA) was used for the comparisons in (b, c). NS, not significant.

Extended Data Fig. 3 Assessment of in vivo immunogenicity of COL1A1-LNPs and COL1A1-EVs.

a, Skin samples from the mice injected with a single dose injection of 22E9 copy number COL1A1 mRNA in COL1A1-EVs and COL1A1-LNPs were harvested after 24 h. Skin samples of mice were analysed by flow cytometry, for b, leukocyte cell percentage, and c, neutrophil percentage (n = 3 for all groups, **P = 0.0034 COL1A1-LNPs vs sham for %CD45 + cells; ***P < 0.001 COL1A1-LNPs vs Sham for %neutrophils among CD45 + cells; NS, not significant). d, Protein quantification via ELISA for IFN-γ, IL-1β, IL-6 and TNF-α shows elevation of inflammatory cytokines in the COL1A1-LNPs group as compared to COL1A1-EVs (n = 3 for all groups, **P = 0.0074 COL1A1-LNPs vs Sham for IFN-γ; #P = 0.0333 COL1A1-EVs vs Sham and ***P < 0.001 COL1A1-LNPs vs Sham for IL-1β; ***P < 0.001 COL1A1-LNPs vs Sham for IL-6; *P = 0.0146 COL1A1-LNPs vs Sham for TNF-α; NS, not significant). e, Representative immunostaining images for TNF-α and (f) IL-6 after injected with COL1A1-EVs and COL1A1-LNPs. Scale bar, 100 µm. All data are from three independent experiments and are presented as means ± SEM. One-way ANOVA was used for the comparisons in (bd).

Extended Data Fig. 4 Return of dermal wrinkles to baseline after treatment with low dose COL1A1-EVs.

a, Wrinkles were tracked on days 0, 4, 7, 14, 21, 28, 35, 42, 49, and 56 d after the indicated treatments (5 low-dose injections of COL1A1-EVs (2.7E9 copy number COL1A1 mRNA), COL1A1-LNPs (2.7E9 copy number COL1A1 mRNA), unloaded EVs, 0.05% retinoic acid [RA], saline). n = 4, Scale bar, 5 mm. Female nude mice that were not exposed to UV comprised the sham group. b, Numbers of wrinkles on the dorsal skin of the mice over time. (n = 4 for all groups; **P = 0.008 COL1A1-EVs vs Saline at day 7; **P = 0.004 COL1A1-EVs vs Saline at day 21, **P = 0.001 COL1A1-EVs vs Saline at day 35; ***P < 0.001 COL1A1-EVs vs Saline at days 14, 28, 42, and 49; P = 0.025 RA vs Saline at day 21; ††P = 0.007 RA vs Saline at day 28; ##P = 0.0071 Unloaded EVs vs Saline at day 14; ##P = 0.004 Unloaded EVs vs Saline at day 21; ##P = 0.002 Unloaded EVs vs Saline at day 28; #P = 0.015 Unloaded EVs vs Saline at day 35; ※※P = 0.0053 COL1A1-LNPs vs Saline at day 14; ※※P = 0.0041 COL1A1-LNPs vs Saline at day 21; P = 0.017 COL1A1-LNPs vs Saline at day 28; P = 0.022 COL1A1-LNPs vs Saline at day 35). c, Total wrinkle area (n = 4 for all groups, *P = 0.012 COL1A1-EVs vs Saline at day 7; ***P < 0.001 COL1A1-EVs vs Saline at days 14, 21, 28 and 35; *P = 0.015 COL1A1-EVs vs Saline at day 42; ††P = 0.008 RA vs Saline at day 14; ††P = 0.007 RA vs Saline at days 21 and 35;††P = 0.005 RA vs Saline at day 28; #P = 0.012 Unloaded EVs vs Saline at day 14; #P = 0.035 Unloaded EVs vs Saline at day 21; ##P = 0.002 Unloaded EVs vs Saline at day 28; P = 0.062 COL1A1-LNPs vs Saline at day 14; P = 0.039 COL1A1-LNPs vs Saline at day 21; ※※P = 0.0027 COL1A1-LNPs vs Saline at day 28; ※※P = 0.046 COL1A1-LNPs vs Saline at day 35). All data are from three independent experiments and are presented as means ± SEM. Two-way ANOVA was used for the comparisons in (b, c).

Extended Data Fig. 5 Evaluation of long term COL1A1-EV MN dermal wrinkle treatment by skin replica plaster.

a–c, Microscopic observation of dorsal skin and skin replica at 1 month, 2 months, and 3 months after treatment. Scale bar, 5 mm. d, e Quantification of mean wrinkle length (n = 4 for all groups, ***P < 0.001 COL1A1-EV MN vs Saline at 1 month and 2 months; ###P < 0.001 Needle injection vs Saline at 1 month; ††P = 0.031 HA MN vs Saline at 1 month;※※P = 0.029 Unloaded EV MN vs Saline at 1 month) and mean wrinkle depth (n = 4 for all groups, ***P < 0.001 COL1A1-EV MN vs Saline at 1 month; **P = 0.001 COL1A1-EV MN vs Saline at 2 months; Needle injection vs Saline not significant at 1 month; HA MN vs Saline not significant at 1 month) from skin replicas. All data are from three independent experiments and are presented as means ± SEM. Two-way ANOVA was used for the comparisons in (d, e).

Extended Data Fig. 6 Maintenance of wrinkle treatment via serial injection of COL1A1-EVs and COL1A1-EV MN.

a, After 8 weeks of UV irradiated photoaging, wrinkles were tracked for mice treated every 30 days with 1) saline, 2) COL1A1-EVs, and 3) COL1A1-EV MN on days 0, 4, 7, 14, 21, 28, 49, 70, and 91 (COL1A1-EVs, COL1A1-EV MN, Saline). n = 4, Scale bar, 5 mm. b, Total wrinkle number (n = 4 for all groups; *P = 0.019 COL1A1-EV MN vs Saline at day 4; #P = 0.034 COL1A1-EVs vs Saline, *P = 0.031 COL1A1-EV MN vs Saline at day 7; #P = 0.030 COL1A1-EVs vs Saline, **P = 0.008 COL1A1-EV MN vs Saline at day 14; **P = 0.008 COL1A1-EV MN vs Saline at day 21; *P = 0.025 COL1A1-EV MN vs Saline at day 28; **P = 0.006 COL1A1-EV MN vs Saline at day 35; #P = 0.031 COL1A1-EVs vs Saline, *P = 0.030 COL1A1-EV MN vs Saline at day 42; #P = 0.044 COL1A1-EVs vs Saline, *P = 0.016 COL1A1-EV MN vs Saline at day 49; *P = 0.016 COL1A1-EV MN vs Saline at day 56; #P = 0.017 COL1A1-EVs vs Saline, *P = 0.020 COL1A1-EV MN vs Saline at day 63; *P = 0.018 COL1A1-EV MN vs Saline at day 70; #P = 0.011 COL1A1-EVs vs Saline, **P = 0.006 COL1A1-EV MN vs Saline at day 77; #P = 0.028 COL1A1-EVs vs Saline, *P = 0.037 COL1A1-EV MN vs Saline at day 84; #P = 0.043 COL1A1-EVs vs Saline, *P = 0.043 COL1A1-EV MN vs Saline at day 91) and c, wrinkle area on the dorsal skin of the mice during 90 day study window (n = 4 for all groups; #P = 0.012 COL1A1-EVs vs Saline, **P = 0.005 COL1A1-EV MN vs Saline at day7; #P = 0.010 COL1A1-EVs vs Saline, *P = 0.048 COL1A1-EV MN vs Saline at day 14; #P = 0.023 COL1A1-EVs vs Saline, *P = 0.021 COL1A1-EV MN vs Saline at day 21; *P = 0.022 COL1A1-EV MN vs Saline at day 28; *P = 0.046 COL1A1-EV MN vs Saline at day 35; #P = 0.019 COL1A1-EVs vs Saline, **P = 0.009 COL1A1-EV MN vs Saline at day 42; #P = 0.042 COL1A1-EVs vs Saline, *P = 0.030 COL1A1-EV MN vs Saline at day 49; *P = 0.030 COL1A1-EV MN vs Saline at day63; *P = 0.029 COL1A1-EV MN vs Saline at day 70; #P = 0.048 COL1A1-EVs vs Saline, *P = 0.022 COL1A1-EV MN vs Saline at day 77; #P = 0.040 COL1A1-EVs vs Saline, *P = 0.027 COL1A1-EV MN vs Saline at day 84; *P = 0.045 COL1A1-EV MN vs Saline at day 91). All data are from three independent experiments and are presented as means ± SEM. Two-way ANOVA was used for the comparisons in (b, c).

Supplementary information

Supplementary Information

Supplementary methods, results and discussion, materials, figures, tables and references.

Reporting Summary

Supplementary Video 1

Microneedles delivering HA EVs on mouse skin.

Supplementary Video 2

Ex vivo time course of the dissolution of the tips of microneedles delivering HA EVs into the skin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Y., Tian, Y., Yang, Z. et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng 7, 887–900 (2023). https://doi.org/10.1038/s41551-022-00989-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00989-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research