Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
A critical necessity of electrochemical catalysts and reactions is that they demonstrate stable operation over time, but what defines something as stable or unstable? This Perspective discusses the complexities of stability in CO2 electrolysis, calling for a re-evaluation and redefinition of stability as a performance metric.
This Perspective discusses the dynamic structural changes of metal nanoparticle catalysts under working conditions and several industrial processes designed to accommodate such changes. The authors highlight the potential for reactor and process upgrades through managing these dynamic catalyst changes.
Green acetylene production, utilizing renewable feedstocks and decarbonized electricity, can leverage both traditional and emerging technologies. This Perspective showcases how a transitional trajectory to green acetylene could rekindle interest in acetylene as a versatile building block for advancing sustainability in the chemical industry.
Plastics play an essential role in modern life, but their uncontrolled disposal has led to severe environmental impacts. Sustainable strategies for reusing plastics waste are urgently needed. This Perspective examines biotechnological solutions for plastics recycling and upcycling, with an emphasis on the process-oriented challenges involved in achieving a circular plastics economy.
Oligonucleotide therapeutics have emerged as a promising alternative to traditional small-molecule and protein-based drugs. This Perspective discusses how chemical engineering can broaden oligonucleotide applications to extrahepatic diseases and enable larger-scale production, ultimately allowing treatment of more prevalent conditions than is currently possible.
This Perspective argues that early assessments of technology-market fit, as well as how the physics governing system performance evolves with scale, can de-risk technology development and accelerate deployment. The authors highlight tools and processes that can be used to assess both these factors at an early stage.
Electrothermal synthesis of commodity chemicals has received notable interest as renewable electricity becomes more available and environmental challenges are increasingly recognized. This Perspective discusses critical engineering advances, unaddressed challenges and potential directions for the electrothermal synthesis of commodity chemicals toward its broader implementation for future chemical manufacturing.
All-solid-state lithium–sulfur batteries have been recognized for their high energy density and safety. This Perspective explores sulfur redox in the solid state, emphasizing the critical roles of electrochemical kinetics, thermodynamics, mass transport and advanced techniques such as cryogenic electron microscopy to help bridge gaps in current understanding.
Water management is crucial for enhancing economic viability and minimizing the environmental impact of direct air capture (DAC) technologies, but the high energy intensity necessitates heat recovery techniques. This Perspective discusses several front-end and back-end strategies for coupling water management with heat integration in DAC processes.
Tandem catalysis and tandem reactors provide unique opportunities for sustainably converting CO2 into valuable products that are not accessible by traditional catalytic processes. This Perspective discusses progress in and opportunities for developing tandem catalytic process that involve various combinations of thermocatalysis, electrocatalysis, photocatalysis, plasma catalysis and biocatalysis.
This Perspective discusses electrochemically mediated carbon dioxide capture systems, which can offer lower energetics than standard thermal methods, with modular scalability. New integrated configurations can further reduce costs and improve unit productivity, while further engineering of existing cell designs will enable more rapid implementation.