Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 390 results
Advanced filters: Author: Kim Newton Clear advanced filters
  • Local shear stress from an atomic force microscope tip can control the crystal directions in thin oxide films. This approach enables the manipulation of local magnetic anisotropy in ferromagnetic metals.

    • Wei Peng
    • Wenjie Meng
    • Marin Alexe
    ResearchOpen Access
    Nature Nanotechnology
    P: 1-6
  • Solid-state spatio-spectral coherent light detection and ranging system is proposed based on flutter-wavelength-swept laser for real-time four-dimensional coherent imaging over extended measurable distance even in challenging environments.

    • Dawoon Jeong
    • Hansol Jang
    • Chang-Seok Kim
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-11
  • Genetic surveillance of Plasmodium falciparum has been ongoing in the Greater Mekong Subregion since 2017. Here, the authors report data until 2022, and demonstrate changes in drug resistance profiles of circulating strains coinciding with changes in frontline therapy policies.

    • Varanya Wasakul
    • Tess D. Verschuuren
    • Olivo Miotto
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • The identification via weak lensing of a subcluster halo, connected to the galaxy cluster Perseus by a mass bridge, provides direct evidence of a past major merger, reshaping our understanding of Perseus’s dynamical history.

    • Kim HyeongHan
    • M. James Jee
    • Ho Seong Hwang
    Research
    Nature Astronomy
    Volume: 9, P: 925-931
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The authors study the light-driven dynamics of attractive and repulsive Fermi polarons in monolayer WSe2. They show that the resonance shifts of Fermi polarons are valley-selective; the resonance shifts of attractive polarons increase with Fermi-sea density, while those of repulsive polarons decrease.

    • Hyojin Choi
    • Jinjae Kim
    • Hyunyong Choi
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-7
  • scATAC-seq data pose statistical challenges due to sparsity and cell-specific sequence capture. Here, the authors present PACS, a zero-adjusted statistical model that enables complex hypothesis testing of accessibility-modulating factors while addressing sparse and incomplete data.

    • Zhen Miao
    • Jianqiao Wang
    • Junhyong Kim
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Helium is an atom of great scientific interest, yet much debate exists surrounding the shape its molecules form. Here Voigtsberger et al. present experimental results imaging the wavefuction of 4He3 and 3He4He2 trimer systems, which suggest that 4He3 is a random cloud while 3He4He2is a quantum halo state.

    • J. Voigtsberger
    • S. Zeller
    • R. Dörner
    Research
    Nature Communications
    Volume: 5, P: 1-6
  • Epitaxial BaTiO3 ultra scaled nanoislands (30−60 nm) on Si exhibit an electrically switchable topological center down-convergent polar pattern. The peculiar island shape induces a lateral swirling component, which confers chirality to the polar domains.

    • Ibukun Olaniyan
    • Iurii Tikhonov
    • Catherine Dubourdieu
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • In 1923, Otto Warburg published his landmark study, in which he described his seminal observations related to metabolic shifts in cancer, often referred to as the Warburg effect. His work laid the foundation for an understanding of how metabolic reconfiguration contributes to cancer onset and progression. Several researchers in the field share their thoughts on what this discovery means to them and how it has inspired their scientific journey.

    • Craig B. Thompson
    • Karen H. Vousden
    • Caroline R. Bartman
    Reviews
    Nature Metabolism
    Volume: 5, P: 1840-1843
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • COMET, an artificial intelligence method that improves the analysis of small medical studies using large clinical databases, has been created. COMET can help develop better artificial intelligence tools and identify key biomarkers across many diseases, potentially changing medical research.

    • Samson J. Mataraso
    • Camilo A. Espinosa
    • Nima Aghaeepour
    ResearchOpen Access
    Nature Machine Intelligence
    Volume: 7, P: 293-306
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Correlated insulator states of moire excitons in transition metal dichalcogenide heterostructures have attracted significant attention recently. Here the authors use time-resolved pump-probe spectroscopy to demonstrate the effects of non-equilibrium correlations of moire excitons in WSe2/WS2 heterobilayers.

    • Jinjae Kim
    • Jiwon Park
    • Hyunyong Choi
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-9
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the ___location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants.

    • Loïc Yengo
    • Sailaja Vedantam
    • Joel N. Hirschhorn
    ResearchOpen Access
    Nature
    Volume: 610, P: 704-712
  • Ultrafast laser pulses are useful to study electron dynamics in chemical bonds, but their influence on bond breaking is not fully understood. Wu et al. study H2 bond breaking with coincidence techniques, and find a phase-dependent anisotropy of the H+fragmentation even for isotropic multicycle laser pulses.

    • J. Wu
    • M. Magrakvelidze
    • R. Dörner
    Research
    Nature Communications
    Volume: 4, P: 1-6
  • It was recently demonstrated that particular materials with non-trivial electronic band structure support quasiparticle excitations described by the relativistic Weyl equation. Here, the authors explore how an analogous magnonic band structure may exist in breathing pyrochlore antiferromagnets.

    • Fei-Ye Li
    • Yao-Dong Li
    • Gang Chen
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • Label discrimination is challenging in fluorescence microscopy due to broad spectra and narrow lifetime distribution. Here, the authors introduce extra kinetic dimensions by illuminating reversibly photoswitchable fluorophores with different intensities, and discriminate 20 spectrally similar fluorophores.

    • Raja Chouket
    • Agnès Pellissier-Tanon
    • Ludovic Jullien
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-8
  • Patricia Munroe, Christopher Newton-Cheh, Andrew Morris and colleagues perform association studies in over 340,000 individuals of European ancestry and identify 66 loci, of which 17 are novel, involved in blood pressure regulation. The risk SNPs are enriched for cis-regulatory elements, particularly in vascular endothelial cells.

    • Georg B Ehret
    • Teresa Ferreira
    • Patricia B Munroe
    Research
    Nature Genetics
    Volume: 48, P: 1171-1184
  • Probabilistic computing has recently emerged as a promising energy-based computing system for solving non-deterministic polynomial-time-hard (NP-hard) problems. Here the authors develop a novel pbit unit, using NbOx volatile memristor, in which a self-clocking oscillator harnesses noise-induced metal-insulator transition, enabling high-performance probabilistic computing.

    • Hakseung Rhee
    • Gwangmin Kim
    • Kyung Min Kim
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-8
  • Limited datasets hinder the accurate prediction of DNA origami structures. A data-driven and physics-informed approach for model training is presented using a graph neural network to facilitate the rapid virtual prototyping of DNA-based nanostructures.

    • Chien Truong-Quoc
    • Jae Young Lee
    • Do-Nyun Kim
    Research
    Nature Materials
    Volume: 23, P: 984-992