Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 647 results
Advanced filters: Author: X Yuan Clear advanced filters
  • Authors use a high-entropy engineering approach to produce fully amorphous BiTO films by exfoliation and annealing, creating crystalline regions, leading to flexible ceramics with dielectric properties.

    • Lvye Dou
    • Bingbing Yang
    • Yuan-Hua Lin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • While Bell inequalities have been violated several times—mostly in photonic systems—their violations within particle physics experiments are less explored. Here, the BESIII Collaboration showcases Bell-violating nonlocal correlations between entangled hyperon pairs.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • The study of isotopes away from the beta stability valley is crucial for the understanding of nuclear structure, especially for neutron-deficient heavy nuclei. Here, the authors report the observation of the alpha-decay isotope 210-protactinium (Pa), extending the alpha-decay systematics of underexplored regions of the nuclides chart.

    • M. M. Zhang
    • J. G. Wang
    • S. G. Zhou
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-7
  • Multiple resonance (MR) emitters with narrowband luminescence typically suffer from inadequate frontier molecular orbital levels. Here, authors incorporate cyano motifs at peripheral sites of the MR backbone to adjust the energy levels, realizing device efficiency of over 23% for stable devices.

    • Xiao-Chun Fan
    • Xun Tang
    • Xiao-Hong Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The semileptonic decay channels of the Λc baryon can give important insights into weak interaction, but decay into a neutron, positron and electron neutrino has not been reported so far, due to difficulties in the final products’ identification. Here, the BESIII Collaboration reports its observation in e+e- collision data, exploiting machine-learning-based identification techniques.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The death of massive stars has traditionally been discovered by explosive events in the gamma-ray band. Liu et al. show that the sensitive wide-field monitor on board Einstein Probe can reveal a weak soft-X-ray signal much earlier than gamma rays.

    • Y. Liu
    • H. Sun
    • X.-X. Zuo
    Research
    Nature Astronomy
    Volume: 9, P: 564-576
  • Allele-preferential transcription factor binding can influence pancreatic ductal adenocarcinoma risk loci function. Here, the authors show allele-specific JunB and JunD binding at chr1p36.33 and propose a role for KLHL17 in protein homeostasis by mitigating inflammation.

    • Katelyn E. Connelly
    • Katherine Hullin
    • Laufey T. Amundadottir
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Investigating the inner structure of baryons is important to further our understanding of the strong interaction. Here, the BESIII Collaboration extracts the absolute value of the ratio of the electric to magnetic form factors and its relative phase for e + e − → J/ψ â†’ ΛΣ decays, enhancing the signal thanks to the vacuum polarisation effect at the J/ψ peak.

    • M. Ablikim
    • M. N. Achasov
    • J. Zu
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-9
  • Lilies are perennial plants with ornamental flowers and large genomes. The authors assemble genomes of two Liliales species, analyze lily phylogeny, flower and stem development (bulbs in lilies, rhizomes in flame lilies), bulb growth transitions, and colchicine biosynthesis.

    • Yuwei Liang
    • Qiang Gao
    • Liangsheng Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • The clinical significance of inferring cell spatial profiles from histology images from cancer patients remains to be explored. Here, the authors develop a weakly-supervised deep-learning method, HistoCell, for the direct prediction of super-resolution cell spatial profiles from histology images at the single-nucleus-level.

    • Peng Zhang
    • Chaofei Gao
    • Shao Li
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-21
  • The underlying mechanism of lithium dendrite penetration through ceramic electrolytes is debated. Here, authors employ MD simulations to enable atomic-scale investigation in the process of dendrite penetration and the concurrent development of cracks during solid state lithium battery operation.

    • Bowen Zhang
    • Botao Yuan
    • Yuanpeng Liu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • On-surface synthesis of two-dimensional polymers is a useful strategy for designing the lattice, orbital and spin symmetries of materials, but controlling their layer stacking remains challenging. Now, a method to synthesize bilayer two-dimensional covalent organic frameworks at a liquid–substrate interface through monomer condensation has been developed; large-area moiré superlattices emerge from the twisted bilayer stacking.

    • Gaolei Zhan
    • Brecht Koek
    • Kian Ping Loh
    ResearchOpen Access
    Nature Chemistry
    Volume: 17, P: 518-524
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The interfaces between ferromagnets and superconductors receive many attentions due to emergent relativistic spin-orbit coupling. Here, the authors provide possible evidence for spin triplet Andreev reflection at the interface between a van der Waals ferromagnet Fe0.29TaS2 and a s-wave superconductor NbN.

    • Ranran Cai
    • Yunyan Yao
    • Wei Han
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-8
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Fibers derived from non-silk proteins hold potential for various biomedical applications, but mechanically-balanced and highly-biocompatible regenerated protein fibers are elusive. Here, the authors report an entanglement-reinforced strategy to fabricate keratin/albumin bio-fibers that show high strength and toughness, along with favorable biocompatibility, degradability and immunocompatibility.

    • Haonan He
    • Xianchi Zhou
    • Jian Ji
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Wang et al. develop data-independent acquisition activity-based protein profiling, a quantitative chemoproteomic method to globally profile protein dopamination in the mouse brain, and identify a protective role of dopamine in regulating the function of microtubule-associated protein Tau.

    • Qianwen Wang
    • Zhengtao Liu
    • Chu Wang
    Research
    Nature Chemical Biology
    P: 1-10
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Entanglement was observed in top–antitop quark events by the ATLAS experiment produced at the Large Hadron Collider at CERN using a proton–proton collision dataset with a centre-of-mass energy of √s  = 13 TeV and an integrated luminosity of 140 fb−1.

    • G. Aad
    • B. Abbott
    • L. Zwalinski
    ResearchOpen Access
    Nature
    Volume: 633, P: 542-547
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Quantum teleportation has found important applications in quantum technologies, but pushing it to macroscopic objects is challenging because of the fragility of quantum states. Here, the authors demonstrate teleportation of states from light beams to the vibrational states of a macroscopic diamond sample.

    • P.-Y. Hou
    • Y.-Y. Huang
    • L.-M. Duan
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • Multiferroic BiFeO3 is promising for applications where electric and magnetic fields need to be coupled, for example, in magnetic data storage. Here, combining theory and experiment the authors provide a microscopic insight into the switching of magnetization by electric fields in BiFeO3.

    • Ziyao Zhou
    • Morgan Trassin
    • Nian X. Sun
    Research
    Nature Communications
    Volume: 6, P: 1-7
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Lattice stability related to the structural response is the basis for understanding mechanical and physical behavior of crystalline solids. Here, the authors show a manifestation of elastic instability in high-entropy alloys via elastic strain induced amorphization.

    • Yeqiang Bu
    • Yuan Wu
    • Wei Yang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • Hydrogen-doping driven metal to ferroelectric phase transition in a complex oxide NdNiO3 is demonstrated. Transient negative differential capacitance and implementation of polarization decay into neural network for learning are then presented.

    • Yifan Yuan
    • Michele Kotiuga
    • Shriram Ramanathan
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-11