Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Single-cell and spatial genomic landscape of non-small cell lung cancer brain metastases

Abstract

Brain metastases frequently develop in patients with non-small cell lung cancer (NSCLC) and are a common cause of cancer-related deaths, yet our understanding of the underlying human biology is limited. Here we performed multimodal single-nucleus RNA and T cell receptor, single-cell spatial and whole-genome sequencing of brain metastases and primary tumors of patients with treatment-naive NSCLC. Chromosomal instability (CIN) is a distinguishing genomic feature of brain metastases compared with primary tumors, which we validated through integrated analysis of molecular profiling and clinical data in 4,869 independent patients, and a new cohort of 12,275 patients with NSCLC. Unbiased analyses revealed transcriptional neural-like programs that strongly enriched in cancer cells from brain metastases, including a recurring, CINhigh cell subpopulation that preexists in primary tumors but strongly enriched in brain metastases, which was also recovered in matched single-cell spatial transcriptomics. Using multiplexed immunofluorescence in an independent cohort of treatment-naive pairs of primary tumors and brain metastases from the same patients with NSCLC, we validated genomic and tumor-microenvironmental findings and identified a cancer cell population characterized by neural features strongly enriched in brain metastases. This comprehensive analysis provides insights into human NSCLC brain metastasis biology and serves as an important resource for additional discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design and refinement of malignant cell assignment.
Fig. 2: Genomic instability in NSCLC BMs.
Fig. 3: Cancer cell programs of NSCLC BMs.
Fig. 4: Discovery of a malignant cell population shared across patients with NSCLC.
Fig. 5: The tumor immune landscape of NSCLC BMs.
Fig. 6: Spatial landscape of NSCLC BMs.

Similar content being viewed by others

Data availability

Processed data (snRNA-seq, TCR-seq, spatial transcriptomics, whole-genome sequencing) are deposited at NCB GEO, with accession number GSE223503. Raw data were uploaded to dbGAP, with accession number phs003865.v1.p1. The deidentified DNA-sequencing and RNA-seq data are owned by Caris Life Sciences and cannot be publicly shared owing to the data usage agreement signed by B.I. at Columbia University Irving Medical Center. Qualified researchers can apply for access to these data by contacting J. Xiu ([email protected]), submitting a brief proposal and signing a data usage agreement. Inquiries will be addressed within 2 weeks, and the signing of data usage agreements may take up to 3 months, depending on institutional requirements. Further information and requests for resources should be directed to the corresponding author and will be fulfilled provided that the request complies with the ethical approval of the study. Reference genomes used in the study include the following: hg19, https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.13/ and GRCh38 (TCR-seq), https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/. Data in validation cohorts can be found at the following and are cited in the references section: TCGA, https://portal.gdc.cancer.gov/; https://doi.org/10.1016/j.cell.2022.01.003 (ref. 27); https://doi.org/10.1038/s41467-020-16164-1 (ref. 12); https://doi.org/10.1158/2159-8290.CD-15-0369 (ref. 7) and https://doi.org/10.1038/s41588-020-0592-7 (ref. 28).

Code availability

The full code for genomics analyses and image analysis is available via GitHub at https://github.com/IzarLab/NSCLC_study and https://github.com/kbestak/nf_mcmicro/tree/unstitch_restitch, respectively.

References

  1. Sperduto, P. W. et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int. J. Radiat. Oncol. Biol. Phys. 77, 655–661 (2010).

    Article  PubMed  Google Scholar 

  2. Moravan, M. J. et al. Current multidisciplinary management of brain metastases. Cancer 126, 1390–1406 (2020).

    Article  PubMed  Google Scholar 

  3. Achrol, A. S. et al. Brain metastases. Nat. Rev. Dis. Primers 5, 5 (2019).

    Article  PubMed  Google Scholar 

  4. Gridelli, C. et al. Non-small cell lung cancer. Nat. Rev. Dis. Primers 1, 15009 (2015).

    Article  PubMed  Google Scholar 

  5. Abdallah, S. M.-B. & Wong, A. Brain metastases in non-small cell lung cancer: are tyrosine kinase inhibitors and checkpoint inhibitors now viable options? Curr. Oncol. 25, S103–S114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sperduto, P. W. et al. Survival in patients with brain metastases: summary report on the updated diagnosis-specific graded prognostic assessment and definition of the eligibility quotient. J. Clin. Oncol. 38, 3773–3784 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brastianos, H. C., Cahill, D. P. & Brastianos, P. K. Systemic therapy of brain metastases. Curr. Neurol. Neurosci. Rep. 15, 518 (2015).

    Article  PubMed  Google Scholar 

  9. Zhao, N. et al. Alterations of LKB1 and KRAS and risk of brain metastasis: comprehensive characterization by mutation analysis, copy number, and gene expression in non-small cell lung carcinoma. Lung Cancer 86, 255–261 (2014).

    Article  PubMed  Google Scholar 

  10. Biermann, J. et al. Dissecting the treatment-naive ecosystem of human melanoma brain metastasis. Cell 185, 2591–2608.e30 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, F. et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 12, 2540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maynard, A. et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182, 1232–1251.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 39, 1594–1609.e12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595, 578–584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bejarano, L. et al. Interrogation of endothelial and mural cells in brain metastasis reveals key immune-regulatory mechanisms. Cancer Cell 42, 378–395.e10 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y. et al. Multimodal single-cell and whole-genome sequencing of small, frozen clinical specimens. Nat. Genet. 55, 19–25 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao, R. et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat. Biotechnol. 39, 599–608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 8, 1324 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Skakodub, A. et al. Genomic analysis and clinical correlations of non-small cell lung cancer brain metastasis. Nat. Commun. 14, 4980 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, X. et al. Genetic intratumor heterogeneity remodels the immune microenvironment and induces immune evasion in brain metastasis of lung cancer. J. Thorac. Oncol. 19, 252–272 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 38, 1043–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575.e11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shih, D. J. H. et al. Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nat. Genet. 52, 371–377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holland, A. J. & Cleveland, D. W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell. Biol. 10, 478–487 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zack, T. I. et al. Pan-cancer patterns of somatic copy-number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, J. et al. Non-cell-autonomous cancer progression from chromosomal instability. Nature 620, 1080–1088 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gavish, A. et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 618, 598–606 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Schoenfeld, A. J. et al. The genomic landscape of SMARCA4 alterations and associations with outcomes in patients with lung cancer. Clin. Cancer Res. 26, 5701–5708 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Desponds, J., Mora, T. & Walczak, A. M. Fluctuating fitness shapes the clone-size distribution of immune repertoires. Proc. Natl Acad. Sci. USA 113, 274–279 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Sudmeier, L. J. et al. Distinct phenotypic states and spatial distribution of CD8+ T cell clonotypes in human brain metastases. Cell Rep. Med. 3, 100620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20, 218–232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210, 1977–1992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mancusi, R. & Monje, M. The neuroscience of cancer. Nature 618, 467–479 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guerreiro, S., Privat, A.-L., Bressac, L. & Toulorge, D. CD38 in neurodegeneration and neuroinflammation. Cells 9, 471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morandi, F. et al. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation. Oncotarget 6, 25602–25618 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jin, Y. et al. Targeting polarized phenotype of microglia via IL6/JAK2/STAT3 signaling to reduce NSCLC brain metastasis. Signal Transduct. Target.Ther. 7, 52 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, H., Pal, S. K., Reckamp, K., Figlin, R. A. & Yu, H. STAT3: a target to enhance antitumor immune response. Curr. Top. Microbiol. Immunol. 344, 41–59 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, Y., Li, Y.-Y., Matsushima, K., Baba, T. & Mukaida, N. CCL3–CCR5 axis regulates intratumoral accumulation of leukocytes and fibroblasts and promotes angiogenesis in murine lung metastasis process. J. Immunol. 181, 6384–6393 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Yamaguchi, M. et al. Stromal CCL5 promotes breast cancer progression by interacting with CCR3 in tumor cells. Int. J. Mol. Sci. 22, 1918 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laudati, E., Currò, D., Navarra, P. & Lisi, L. Blockade of CCR5 receptor prevents M2 microglia phenotype in a microglia–glioma paradigm. Neurochem. Int. 108, 100–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, H. et al. Genes associated with increased brain metastasis risk in non-small cell lung cancer: comprehensive genomic profiling of 61 resected brain metastases versus primary non-small cell lung cancer (Guangdong Association Study of Thoracic Oncology 1036). Cancer 125, 3535–3544 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Marquis, C. et al. Chromosomally unstable tumor cells specifically require KIF18A for proliferation. Nat. Commun. 12, 1213 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cohen-Sharir, Y. et al. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature 590, 486–491 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zou, Y. et al. The single-cell landscape of intratumoral heterogeneity and the immunosuppressive microenvironment in liver and brain metastases of breast cancer. Adv. Sci. 10, e2203699 (2023).

    Article  Google Scholar 

  57. Gonzalez, H. et al. Cellular architecture of human brain metastases. Cell 185, 729–745.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Karimi, E. et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature 614, 555–563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sorin, M. et al. Single-cell spatial landscapes of the lung tumour immune microenvironment. Nature 614, 548–554 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smalley, I. et al. Single-cell characterization of the immune microenvironment of melanoma brain and leptomeningeal metastases. Clin. Cancer Res. 27, 4109–4125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Q. et al. The spatial transcriptomic landscape of non-small cell lung cancer brain metastasis. Nat. Commun. 13, 5983 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fallahi-Sichani, M. et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol. Syst. Biol. 13, 905 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mehta, A. et al. Immunotherapy resistance by inflammation-induced dedifferentiation. Cancer Discov. 8, 935–943 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Concepcion, C. P. et al. Smarca4 inactivation promotes lineage-specific transformation and early metastatic features in the lung. Cancer Discov. 12, 562–585 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Marjanovic, N. D. et al. Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell 38, 229–246.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Slyper, M. et al. A single-cell and single-nucleus RNA-seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792–802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lai, D., Ha, G. & Shah, S. HMMcopy: Copy number prediction with correction for GC and mappability bias for HTS data. R version 1.48.0.(2022). R version 1.48.0.

  73. Ho, T. K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998).

    Article  Google Scholar 

  74. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    Article  Google Scholar 

  75. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Fachal, L. et al. Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat. Genet. 52, 56–73 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fay, M. P. & Proschan, M. A. Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 4, 1–39 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sherry, S. T., Ward, M. & Sirotkin, K. dbSNP—database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 9, 677–679 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  89. Pearson, K. The problem of the random walk. Nature 72, 294 (1905).

    Article  Google Scholar 

  90. Hartigan, J. A. & Wong, M. A. Algorithm AS 136: a K-means clustering algorithm. J. R. Stat. Soc. C 28, 100–108 (1979).

    Google Scholar 

  91. Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Borcherding, N. scRepertoire: a toolkit for single-cell immune receptor profiling. F1000Research, 9 https://doi.org/10.12688/f1000research.22139.2 (2022).

  93. Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Schapiro, D. et al. MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging. Nat. Methods 19, 311–315 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

    Article  PubMed  Google Scholar 

  97. Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Lederer, A. R. et al. Statistical inference with a manifold-constrained RNA velocity model uncovers cell cycle speed modulations. Nat. Methods 21, 2271–2286 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nirmal, A. J. & Sorger, P. K. SCIMAP: a Python toolkit for integrated spatial analysis of multiplexed imaging data. J. Open Source Softw. 9, 6604 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Virshup et al. (2024). anndata: Access and store annotated data matrices. J. Open Source Softw. 9, 4371 https://doi.org/10.21105/joss.04371

Download references

Acknowledgements

This study was supported by the National Institute of Health (NIH), National Cancer Institute (NCI) grants R37CA258829, R01CA266446, R01CA280414 and U54CA274506 (to B.I.), and additional support came from the Burroughs Wellcome Fund Career Award for Medical Scientists, a Velocity Fellows Award, the Louis V. Gerstner, Jr. Scholars Program, a Tara Miller Young Investigator Award by the Melanoma Research Alliance, a Tara Miller Team Science Award for Brain Metastasis Research by the Melanoma Research Alliance and the Pershing Square Sohn Cancer Research Alliance Award (to B.I.). B.I. is a CRI Lloyd J. Old STAR (CRI5579). This study was also supported by the Herbert Irving Comprehensive Cancer Center Human Tissue Immunology and Immunotherapy Initiative (to B.I.). L.C. is supported by NIH NCI fellowship F30CA281104. L.C., K.L., E.D’S., P.H., Z.H.W. and D.B. are supported by Medical Scientist Training Program grant T32GM145440. Y.W. was supported by NIH, National Institute of Allergy and Infectious Disease training grant T32AI148099. K.B., M.A.I.A., and D.S. are supported by the German Federal Ministry of Education and Research (BMBF 01ZZ2004) and the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant INST 35/1597-1 FUGG. This work was supported by NIH NCI Cancer Center Support grant P30CA013696, the Molecular Pathology Shared Resource and its Tissue Bank and the Human Immune Monitoring Core at Columbia University. Biospecimens and/or data used for this study were obtained from the Columbia University Biobank, which is partially supported by Columbia University’s Clinical and Translational Science Award funded through grant number UL1TR001873.

Author information

Authors and Affiliations

Authors

Contributions

B.I. conceived of the study and provided overall supervision. S.T., L.C., K.L., E.D’S. Y.W., A.J., C.G., J.B. and N.R. performed analyses of single-cell genomic, spatial and whole-genome sequencing data. L.C., A.D.A., J.C.M., I.B., N.S., P.R., Y.G., P.H., Z.H.W., M.R. and P.S. generated sequencing data. K.B., S.A., P.K., D.Z.B., M.A.I.-.A., D.S. and P.S. analyzed multiplexed imaging data. S.A., V.J., B.B., L.E. and P.S. generated multiplexed imaging data. G.G.L., C.A.S., B.H., N.A.R., M.G.P., D.B., M.I.E., P.C., J.N.B., A.C., A.S., H.H., G.K.S. and B.S.H. provided clinical specimens, clinical annotation and/or histopathological evaluation. S.W., S.K.D. and G.S. contributed DNA and RNA sequencing data. N.A., E.Z., A.M.T. and F.C. provided supervision for specific analyses. D.S. and P.S. provided additional overall supervision. S.T., L.C., P.S. and B.I. wrote the paper and revision. All authors reviewed, contributed to and approved of the paper.

Corresponding author

Correspondence to Benjamin Izar.

Ethics declarations

Competing interests

B.I. has received consulting fees and honoraria from Volastra Therapeutics Inc, Merck, AstraZeneca, Novartis, Eisai and Janssen Pharmaceuticals and has received research funding to Columbia University from Alkermes, Arcus Biosciences, Checkmate Pharmaceuticals, Compugen, Immunocore, Merck, Regeneron and Synthekine. B.I. is a founder of Basima Therapeutics, Inc. C.G. has received consulting fees from Watershed Informatics. B.H. received consulting fees and honoraria from Amgen, Eisai and MJH Life Sciences. A.M.T. received research funding from Ono Pharmaceuticals. N.A.R. is currently an employee and shareholder of Synthekine Inc. B.S.H. has received consulting fees from AstraZeneca, Ideaya, Jazz Pharmaceuticals, Sorrento Therapeutics, Genentech-Roche, OncLive, Veeva, Athenium, Boxer, Dava Oncology and SAI-Med and research funding to Columbia University from Neximmune, Inc, Janssen and Genentech-Roche. A.D.A. is now an employee of Adaptimmune. J.B. is now an employee of Pfizer. S.W., .S.K.D, and G.S. are employees of Caris Life Sciences. A.S. received consulting fees and honoraria from Abbvie, Bristol Myers Squibb, Veracyte, Genentech, Medscape and Physician Education Resource, and research support from Boehringer Ingelheim. All remaining authors report no competing interests.

Peer review

Peer review information

Nature Medicine thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Anna Maria Ranzoni, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 snRNA-seq quality control and refinement of malignant cell assignment.

a, Basic quality control measures of samples (n = 43; PTs = 12, BMs = 31) processed for snRNA-seq and b, expression of a variety of different artifactual stress signatures, each separated by tissue origin. Upper and lower edges of boxplot indicate 75th and 25th percentiles, respectively, and middle line indicates median. One-sided Wilcoxon tests were performed, with p values as indicated on each graph. c, Representative schematic of refinement of malignant cell identity using URBAN (see Methods). An exemplary case is shown with initial cell type assignment (malignant vs. non-malignant) projected in two UMAP dimensions, a schematic summary of URBAN integrating inferred copy number variants (CNV) in single-cell transcriptome data, and refinement using matched low-pass whole-genome sequencing (lpWGS), that enables more accurate determination of malignant cells. This approach is performed in each sample individually and in an iterative fashion across the cohort. d, Exemplary UMAP embedding indicating PTPRC/CD45 and EPCAM expression across individual samples. e, ichorCNA plots for selected samples. X axis indicates chromosome number and y axis log2 ratio for ploidy, where 0 indicates diploidy, +1 gain, and –1 loss.

Extended Data Fig. 2 Chromosomal instability in NSCLC BMs.

a-b, Enrichment of CNVs per genomic ___location profiled from each individual PT and BM sample, with an upper consensus plot which totals all the CNVs observed at a given genomic ___location. The color strip at the top of the plot represents the plurality consensus at each genomic ___location (red = amp, grey = loh, blue = del, orange = bamp, skyblue = bdel) across the chromosomal landscape (columns) for all samples (rows) from a, primary tumors and b, brain metastases. c, Kaplan Meier survival curve of lung adenocarcinoma patient survival, stratified by CINhigh (upper quartile, red line) and CINlow (lower quartile, blue line) status as estimated by measurement of fraction of genome altered (FGA) from whole-exome sequencing data in the cancer genome atlas (TCGA) lung adenocarcinoma cohort. d, Pearson’s correlation of Caris’ panel DNA sequence of ~700 genes with TCGA WES data based on FGA (R = 0.99, p = 0). One-sided Wilcoxon test of significance performed., e-f, CIN70 signature25 expression (z-score) (e) and STING signature expression (z-score) (f) in LUAD RNAseq data from Caris Life Sciences across disease site (PTs = 5867, BMs = 617, ECMs = 2612), g-h, CIN70 signature25 expression (z-score) (g) and STING signature expression (z-score) (h) in LUSC RNAseq data from Caris Life Sciences across disease site (PTs = 2641, BMs = 91, ECMs = 747). Upper and lower edges of boxplots in e-h indicate 75th and 25th percentiles, respectively, and middle line indicates median. Tails extend to the 95% confidence interval. Statistical test and significance level as indicated on top of each boxplot.

Extended Data Fig. 3 NMF metaprograms.

a, Gene set enrichment analysis indicating cancer hallmarks and gene ontology signatures enriched in each of the 8 metaprograms identified by NMF. Q score is FDR adjusted p-value. b, Expression of mixed PT/BM MP signatures (MPs 1, 2, 3, 6) across healthy and malignant tissues (normal lymph node, normal lung, pleural effusion, early/late stage lung cancer, lymph node metastases, and BMs) profiled in Kim et al 202012. Upper and lower edges of boxplots indicate 75th and 25th percentiles, respectively, and middle line indicates median. Tails extend to the 95% confidence interval. Statistical test and significance level as indicated on each boxplot.

Extended Data Fig. 4 Quality control of rare malignant cell population (Cluster 21).

a-f, Quality control measures of rare, malignant cell population (Cluster 21). Box plots depicting a, gene counts, b, mitochondrial reads, c, cluster 21 signature expression across non-malignant groups, d, doublet score, and e-f, processing-related stress signature expression. g, Copy number alteration (CNA) patterns of cluster 21 cells compared to remaining malignant cells in the patient’s original cluster. Columns represent chromosomes, rows individual cell transcriptomes with inferred CNAs (blue = deletion, red = amplification). Left bar indicates rows occupied by cluster 21 cells (green) or other malignant cells from the representative patient (yellow). h, Gene set enrichment analysis (GSEA) of the cluster 21 population based on differential gene expression, Q score is FDR adjusted p-value. i, Stacked bar plots denoting percentage of PT or BM cells that comprise cluster 21 compared to the proportion of non-cluster 21 cells. Two-sided Fisher’s exact test, significance level as indicated. j, CIN70 signature expression in cancer cells from cluster 21 compared to all others. k-l, Boxplots indicating cluster 21 signature expression across matched sample pairs, PA060 (BM): N254 (PT) (k) and PA067 (BM): N586 (PT) (l). m, Cluster 21 signature expression in 44 snRNA-seq profiles in Kim et al12 dataset. n, Box plots indicating the expression of the cluster 21 signature in cell lines derived from NSCLC primary tumors (n = 91) or metastatic lesions (n = 101) of the cancer cell line encyclopedia (CCLE). o, Kaplan Meier survival curve of lung adenocarcinoma patients, stratified by expression of the cluster 21 signature. Data derived from TCGA. p, UMAP embedding of healthy lung epithelial cell types coupled with density gradients to highlight distinct cellular neighborhoods. q, Computation of probability of random walks starting from mixed lineage cells (ML1-ML15) reaching a class of labeled cells (AT1, AT2-Main, AT2-high MT, Airway Ciliated, Other), followed by assigning each unlabeled cell in ML group a cell state label based maximum probability. Upper and lower edges of boxplots indicate 75th and 25th percentiles, respectively, and middle line indicates median. Tails extend to the 95% confidence interval. Statistical test and significance level as indicated on each boxplot. One-side Wilcoxon tests were performed when utilized.

Extended Data Fig. 5 The tumor microenvironment of NSCLC PTs and BMs.

a, Dot plot of representative T cell marker genes, separated by disease site. Rows indicate selected genes, while columns indicate refined cell type assignment. b, UMAP embedding of CD8 + T cell clusters indicating expression of TCF7 and TOX. c-d, Diffusion component (D.C) analysis of CD8 + T cells colored by TCF7 and TOX expression ratio (c), separated by disease site (d). e, Dot plot of representative Myeloid marker genes, separated by disease site. Rows indicate selected genes, while columns indicate refined cell type assignment. f, Dot plot of representative CNS marker genes. Rows indicate selected genes, while columns indicate refined cell type assignment. g, Gene set enrichment analysis indicating cancer hallmarks and gene ontology signatures enriched in CNS: cancer cell, CNS: myeloid, and CNS:T cells interactions identified in the ContactTracing31 analysis. Q score is FDR adjusted p-value.

Extended Data Fig. 6 The spatial landscape of NSCLC PTs and BMs.

a-f, Correlation of TME cell fraction discovered in spatial transcriptomics (x axis) and snRNA-seq (y axis) analysis. Pearson’s correlation and significance as indicated on plot, Shaded areas surrounding line of best fit indicate 95% confidence interval. One-sided Wilcoxon tests of significance were performed. g, Recurrent drivers of spatial variability (selected genes indicated on the left) across samples profiled by spatial transcriptomics (columns). Top bar indicates cell types (in this case, including only malignant cells), and the bottom bar tissue origin (BM vs. PT), h-q, Spatial cell-type annotation across all other samples profiled, with colors indicating cell type assignment.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Reporting Summary

Supplementary Table 1

snRNA-seq cohort information.

Supplementary Table 2

Data related to metaprogram analyses.

Supplementary Table 3

Cluster 21 DEG analysis.

Supplementary Table 4

DEGs of nonmalignant cell types.

Supplementary Table 5

List of consumables.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagore, S., Caprio, L., Amin, A.D. et al. Single-cell and spatial genomic landscape of non-small cell lung cancer brain metastases. Nat Med 31, 1351–1363 (2025). https://doi.org/10.1038/s41591-025-03530-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-025-03530-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer