Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A distinct hypothalamus–habenula circuit governs risk preference

Abstract

Appropriate risk evaluation is essential for survival in complex, uncertain environments. Confronted with choosing between certain (safe) and uncertain (risky) options, animals show strong preference for either option consistently across extended time periods. How such risk preference is encoded in the brain remains elusive. A candidate region is the lateral habenula (LHb), which is prominently involved in value-guided behavior. Here, using a balanced two-alternative choice task and longitudinal two-photon calcium imaging in mice, we identify risk-preference-selective activity in LHb neurons reflecting individual risk preference before action selection. By using whole-brain anatomical tracing, multi-fiber photometry and projection-specific and cell-type-specific optogenetics, we find glutamatergic LHb projections from the medial (MH) but not lateral (LH) hypothalamus providing behavior-relevant synaptic input before action selection. Optogenetic stimulation of MH→LHb axons evoked excitatory and inhibitory postsynaptic responses, whereas LH→LHb projections were excitatory. We thus reveal functionally distinct hypothalamus–habenula circuits for risk preference in habitual economic decision-making.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mice display strong preferential traits for safe or risky options that are stable across time.
Fig. 2: LHb population activity resembles individual risk preference before present action selection.
Fig. 3: Selective LHb cells encode individual risk preference before action selection.
Fig. 4: Retrograde and anterograde AAV labeling of LHb inputs.
Fig. 5: Functional coupling of long-range glutamatergic inputs and LHb is divergent.
Fig. 6: Functionally distinct hypothalamus–LHb circuits are required for risky decision-making.
Fig. 7: LH and MH axonal projections to LHb show distinct functional properties.

Similar content being viewed by others

Data availability

Pre-processed raw minimum datasets from multi-fiber photometry, extracellular electrophysiology and two-photon recordings have been made publicly available in Zenodo via https://doi.org/10.5281/zenodo.13834711 (ref. 76). Unprocessed datasets are available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

MATLAB code is provided alongside pre-processed raw data on Zenodo via https://zenodo.org/records/13834711 (ref. 76). All other custom code used for analyses described herein will be available from the corresponding author upon request.

References

  1. Barkan, C. P. L. Field-test of risk-sensitive foraging in black-capped chickadees (Parus atricapillus). Ecology 71, 391–400 (1990).

    Article  Google Scholar 

  2. Barnard, C. J. & Brown, C. A. J. Risk-sensitive foraging in common shrews (Sorex araneus L.). Behav. Ecol. Sociobiol. 16, 161–164 (1985).

    Article  Google Scholar 

  3. Zalocusky, K. A. et al. Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. Nature 531, 642–646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Keupp, S., Grueneisen, S., Ludvig, E. A., Warneken, F. & Melis, A. P. Reduced risk-seeking in chimpanzees in a zero-outcome game. Phil. Trans. R. Soc. B 376, 20190673 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haux, L. M., Engelmann, J. M., Herrmann, E. & Hertwig, R. How chimpanzees decide in the face of social and nonsocial uncertainty. Anim. Behav. 173, 177–189 (2021).

    Article  Google Scholar 

  6. Haux, L. M., Engelmann, J. M., Arslan, R. C., Hertwig, R. & Herrmann, E. Chimpanzee and human risk preferences show key similarities. Psychol. Sci. 34, 358–369 (2023).

    Article  PubMed  Google Scholar 

  7. Arslan, R. C. et al. How people know their risk preference. Sci. Rep. 10, 15365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Caraco, T. Aspects of risk-aversion in foraging white-crowned sparrows. Anim. Behav. 30, 719–727 (1982).

    Article  Google Scholar 

  9. McCoy, A. N. & Platt, M. L. Risk-sensitive neurons in macaque posterior cingulate cortex. Nat. Neurosci. 8, 1220–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Stopper, C. M. & Floresco, S. B. What’s better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nat. Neurosci. 17, 33–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Caraco, T., Martindale, S. & Whittam, T. S. An empirical demonstration of risk-sensitive foraging preferences. Anim. Behav. 28, 820–830 (1980).

    Article  Google Scholar 

  12. Tuttle, E. M., Wulfson, L. & Caraco, T. Risk-aversion, relative abundance of resources and foraging preference. Behav. Ecol. Sociobiol. 26, 165–171 (1990).

    Article  Google Scholar 

  13. Tobler, P. N., Fiorillo, C. D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura, K., Matsumoto, M. & Hikosaka, O. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J. Neurosci. 28, 5331–5343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, 10503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dabney, W. et al. A distributional code for value in dopamine-based reinforcement learning. Nature 577, 671–675 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. O’Neill, M. & Schultz, W. Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value. Neuron 68, 789–800 (2010).

    Article  PubMed  Google Scholar 

  19. van Holstein, M. & Floresco, S. B. Dissociable roles for the ventral and dorsal medial prefrontal cortex in cue-guided risk/reward decision making. Neuropsychopharmacology 45, 683–693 (2020).

    Article  PubMed  Google Scholar 

  20. Stephenson-Jones, M. et al. Opposing contributions of GABAergic and glutamatergic ventral pallidal neurons to motivational behaviors. Neuron 105, 921–933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stephenson-Jones, M., Floros, O., Robertson, B. & Grillner, S. Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. Proc. Natl Acad. Sci. USA 109, E164–E173 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Amo, R. et al. Identification of the zebrafish ventral habenula as a homolog of the mammalian lateral habenula. J. Neurosci. 30, 1566–1574 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Engbretson, G. A., Reiner, A. & Brecha, N. Habenular asymmetry and the central connections of the parietal eye of the lizard. J. Comp. Neurol. 198, 155–165 (1981).

    Article  CAS  PubMed  Google Scholar 

  24. Herkenham, M. & Nauta, W. J. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol. 187, 19–47 (1979).

    Article  CAS  PubMed  Google Scholar 

  25. Matsumoto, M. & Hikosaka, O. Representation of negative motivational value in the primate lateral habenula. Nat. Neurosci. 12, 77–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J. W. et al. Human habenula segmentation using myelin content. Neuroimage 130, 145–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, R. Y. & Aghajanian, G. K. Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science 197, 89–91 (1977).

    Article  CAS  PubMed  Google Scholar 

  28. Omelchenko, N., Bell, R. & Sesack, S. R. Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area. Eur. J. Neurosci. 30, 1239–1250 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng, Z. et al. Hypothalamus–habenula potentiation encodes chronic stress experience and drives depression onset. Neuron 110, 1400–1415 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Cerniauskas, I. et al. Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula associated with deficits in motivated behaviors. Neuron 104, 899–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stamatakis, A. M. & Stuber, G. D. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat. Neurosci. 15, 1105–1107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, D. et al. Learning shapes the aversion and reward responses of lateral habenula neurons. Elife 6, e23045 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li, K. et al. βCaMKII in lateral habenula mediates core symptoms of depression. Science 341, 1016–1020 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lecca, S. et al. Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice. Nat. Med. 22, 254–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, Y. et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554, 317–322 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Cui, Y. et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554, 323–327 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Orsini, C. A., Willis, M. L., Gilbert, R. J., Bizon, J. L. & Setlow, B. Sex differences in a rat model of risky decision making. Behav. Neurosci. 130, 50–61 (2016).

    Article  PubMed  Google Scholar 

  39. Shabel, S. J., Wang, C., Monk, B., Aronson, S. & Malinow, R. Stress transforms lateral habenula reward responses into punishment signals. Proc. Natl Acad. Sci. USA 116, 12488–12493 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Islas-Preciado, D. et al. Risk-based decision making in rats: modulation by sex and amphetamine. Horm. Behav. 125, 104815 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Hernandez, C. M. et al. Optogenetic dissection of basolateral amygdala contributions to intertemporal choice in young and aged rats. Elife 8, e46174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Orsini, C. A. et al. Optogenetic inhibition reveals distinct roles for basolateral amygdala activity at discrete time points during risky decision making. J. Neurosci. 37, 11537–11548 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lalive, A. L. et al. Synaptic inhibition in the lateral habenula shapes reward anticipation. Curr. Biol. 32, 1829–1836.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Lazaridis, I. et al. A hypothalamus–habenula circuit controls aversion. Mol. Psychiatry 24, 1351–1368 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, H., Liu, X., Wang, L. & Wang, F. Whole-brain connections of glutamatergic neurons in the mouse lateral habenula in both sexes. Biol. Sex Differ. 15, 37 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stephenson-Jones, M. et al. A basal ganglia circuit for evaluating action outcomes. Nature 539, 289–293 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li, H., Pullmann, D. & Jhou, T. C. Valence-encoding in the lateral habenula arises from the entopeduncular region. Elife 8, e41223 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stamatakis, A. M. et al. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J. Neurosci. 36, 302–311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu, J. et al. Intersectional mapping of multi-transmitter neurons and other cell types in the brain. Cell Rep. 40, 111036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Hong, S., Jhou, T. C., Smith, M., Saleem, K. S. & Hikosaka, O. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J. Neurosci. 31, 11457–11471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yetnikoff, L., Cheng, A. Y., Lavezzi, H. N., Parsley, K. P. & Zahm, D. S. Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J. Comp. Neurol. 523, 2426–2456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Groos, D. & Helmchen, F. The lateral habenula: a hub for value-guided behavior. Cell Rep. 43, 113968 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Nieh, E. H. et al. Decoding neural circuits that control compulsive sucrose seeking. Cell 160, 528–541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nieh, E. H. et al. Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron 90, 1286–1298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tritsch, N. X., Granger, A. J. & Sabatini, B. L. Mechanisms and functions of GABA co-release. Nat. Rev. Neurosci. 17, 139–145 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Calvigioni, D. et al. Esr1+ hypothalamic-habenula neurons shape aversive states. Nat. Neurosci. 26, 1245–1255 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bernard, R. & Veh, R. W. Individual neurons in the rat lateral habenular complex project mostly to the dopaminergic ventral tegmental area or to the serotonergic raphe nuclei. J. Comp. Neurol. 520, 2545–2558 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Quina, L. A. et al. Efferent pathways of the mouse lateral habenula. J. Comp. Neurol. 523, 32–60 (2015).

    Article  PubMed  Google Scholar 

  60. Gilad, A., Gallero-Salas, Y., Groos, D. & Helmchen, F. Behavioral strategy determines frontal or posterior ___location of short-term memory in neocortex. Neuron 99, 814–828 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Sturman, O. et al. Deep learning-based behavioral analysis reaches human accuracy and is capable of outperforming commercial solutions. Neuropsychopharmacology 45, 1942–1952 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jun, J. J. et al. Real-time spike sorting platform for high-density extracellular probes with ground-truth validation and drift correction. Preprint at bioRxiv https://doi.org/10.1101/101030 (2017).

  65. Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2017).

  66. Rupprecht, P. & Friedrich, R. W. Precise synaptic balance in the zebrafish homolog of olfactory cortex. Neuron 100, 669–683 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Junek, S., Chen, T. W., Alevra, M. & Schild, D. Activity correlation imaging: visualizing function and structure of neuronal populations. Biophys. J. 96, 3801–3809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, Q. et al. The Allen Mouse Brain Common Coordinate Framework: a 3D reference atlas. Cell 181, 936–953.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Puchades, M. A., Csucs, G., Ledergerber, D., Leergaard, T. B. & Bjaalie, J. G. Spatial registration of serial microscopic brain images to three-dimensional reference atlases with the QuickNII tool. PLoS ONE 14, e0216796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Claudi, F. et al. Visualizing anatomically registered data with brainrender. Elife 10, e65751 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pfefer, T. J., Schomacker, K. T., Ediger, M. N. & Nishioka, N. S. Light propagation in tissue during fluorescence spectroscopy with single-fiber probes. IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).

  72. Pfefer, T. J., Schomacker, K. T., Ediger, M. N. & Nishioka, N. S. Multiple-fiber probe design for fluorescence spectroscopy in tissue. Appl. Opt. 41, 4712–4721 (2002).

    Article  PubMed  Google Scholar 

  73. Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Voigt, F. F. et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat. Methods 16, 1105–1108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180, 780–795.e25 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Groos, D. A distinct hypothalamus–habenula circuit governs risk preference raw data. Zenodo https://doi.org/10.5281/zenodo.13834711 (2024).

Download references

Acknowledgements

This work was supported by grants to F.H. from the Swiss National Science Foundation (SNSF; project grant nos. 310030-127091 and 310030_192617; Sinergia grant no. CRSII5-18O316) and the European Research Council (ERC Advanced Grant, BRAINCOMPATH, 670757), by SNSF Ambizione grants (PZ00P3_209114 to P.R. and PZ00P3_216312 to S.H.), and by grants to D.G., C.L., P.R. and S.H. from the University of Zurich (Forschungskredit grants, projects K-41220-05-01, K-41220-04, K-41220-06-01 and K-41220-07-01). F.H. and T.K. received funding from the University Research Priority Program (URPP) ‘Adaptive Brain Circuits in Development and Learning’ (AdaBD). We thank P. Bethge for managing transgenic mouse lines, D. Dujmovic-Göckeritz for genotyping, the 3R Hub at the ETH Zurich for their support with the additional behavior experiments and analysis, H. Kasper and S. Giger for technical support, and C. Ruff, P. Tobler and M. Mameli for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.G. conceived the project; D.G. and F.H. designed the study; D.G. carried out all surgeries, behavioral training and in vivo experiments with the help of Y.S. (fiber photometry), C.L. (extracellular electrophysiology) and P.R. (two-photon imaging); D.G., A.R., O.S., P.R. and C.L. analyzed behavioral, optical and in vivo electrophysiological data; A.M.R. performed tissue clearing and light-sheet imaging together with D.G.; S.H. and D.G. analyzed light-sheet data; T.S. performed and analyzed ex vivo brain slice recordings; D.G. and M.W. designed and M.W. wrote the custom behavior control software; J.B., T.K., A.A. and F.H. provided supervision; D.G. and F.H. wrote the paper with comments from all authors.

Corresponding authors

Correspondence to Dominik Groos or Fritjof Helmchen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Kay Tye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Mice performing two alternative choice task adapt their choices depending on preferred spout orientation and expected values.

Fraction of preferred (a), decisive (b), and non-preferred (c) choices aligned to spout inversion (solid vertical line). Gray lines indicate individual inversion sessions (2-4 spout inversions per mouse), colored lines indicate mean across sessions for individual animals, dashed line indicates preference threshold. d, Every plot represents data from an individual mouse in response to decreasing value of the safe option. Every black dot represents the mean risky choices across four stable sessions with 200 trials each. Data are represented as mean ± s.e.m. Dotted lines indicate indifference point for each individual. Sigmoid fit.

Source data

Extended Data Fig. 2 Risk preference is independent of motivation, decisiveness, anxiety or sex.

a, Fraction of engaged trials for all risk averse (cyan, n = 32) and risk prone (magenta, n = 15) mice. Open circles indicate fractions of engaged trials (decisive and indecisive) from all trials an animal could engaged in (200 or 300 per session in 14 sessions, 2800 or 4200 trials for each mouse; p = 0.1076). b, Fraction of decisive trials measured as the fraction of all trials an animal could engage in subtracted by the number of indecisive trials (p = 0.2178). Results from plus maze test of animals after completion of two-alternative choice task. Comparison of risk averse (cyan, n = 21) and risk prone (magenta, n = 4) mice in open field (c-f; p = 0.9188, p = 0.7596, p = 0.3948, p = 0.9729), light-dark (g-j; p = 0.9729, p = 0.3958, p = 0.3591, p = 0.5633), and elevated plus maze test (k-o; p = 0.4756, p = 0.9188, p = 1.0, p = 0.5187, p = 0.7084). Fraction risky (p, p = 0.6207), engaged (q, p = 0.1564), and decisive (r, p = 0.8421) trials for male (blue, n = 10) and female (red, n = 9) mice (based on 600 trials across 3 sessions). Comparison of the same animals in open field (s-v; p = 0.0338, p = 0.1063, p = 0.8872, p = 0.4117), light-dark (w-z; p = 0.1834, p = 0.0253, p = 0.0219, p = 0.8650), and elevated plus maze test (aa-ee; p = 0.4791, p = 1.0, p = 0.3802, p = 0.3502, p = 0.1484).*p < 0.05, two-sided Wilcoxon rank sum test. For box plots, the median is indicated by the central line; 25th and 75th percentiles are indicated by the box and maximum/minimum values excluding outliers are indicated by the whiskers.

Source data

Extended Data Fig. 3 LHb fiber photometric signal in reward and post-reward period.

a, Illustration of reward period used for analysis. b, LHb photometry example traces from one animal aligned to reward valve opening. Data are plotted as mean ± s.e.m. c-e, Correlation of reward signal ratios and riskiness across animals. f, Illustration of post-reward period used for analysis. g, LHb photometry example traces for post-reward period (same animal as b). Data are plotted as mean ± s.e.m. h-j, Correlation of post-reward signal ratios and riskiness across animals.

Source data

Extended Data Fig. 4 Divergence in LHb fiber photometric signal cannot be explained by body movement.

a, Cross-correlation of body movement with bulk LHb signal. Data were obtained from the same animals as in Fig. 2 f-k (n = 9 mice), and are presented as mean ± s.e.m. b, Quantification of cross correlation latency to peak and maximum amplitude across animals. c, Correlation of body movement and riskiness of the respective animal. d, Correlation of body movement and LHb photometry signal in the DP. For box plots, the median is indicated by the central line; 25th and 75th percentiles are indicated by the box and maximum/minimum values excluding outliers are indicated by the whiskers.

Source data

Extended Data Fig. 5 Inter-individual and bulk LHb two-photon data.

a, Mean calcium transients (smoothed) for individual mice for all decisive trials sorted for mean activity in the DP. b, Quantification of two-photon bulk activity during the DP for present preferred (violet) and non-preferred (gray) choice trials (n = 12 mice). Line colors indicate individual risk preference (risk averse (cyan), risk neutral (black), risk prone (magenta), p = 0.0425). Two-photon bulk data were achieved from drawing a single region of interest (ROI) containing all recorded cells across the entire field of view (FOV). c, Ratio of LHb ΔF/F integrals during the DP for present risky and safe choice bulk activity correlated with individual risk preference across sessions (n = 12 mice; data are represented as mean ± s.e.m.). d and e, Same as b and c but trials were sorted for choice in the preceding trial (p = 0.0049).Two-sided Wilcoxon-signed rank test.

Source data

Extended Data Fig. 6 LHb DP activity attenuates over trials but not sessions and independent of trial choice.

a, Single trial DP activity of LHb example cell (decisive trials only) across one example session. b, Quantification of mean single cell correlation with trial number (520 cells pooled across 12 mice; original (bue), shuffled (gray) data; p = 5.0193e-17). c, Activity of the same cell plotted across sessions. d, Quantification of across sessions (p = 0.1549). e-h Same as a-d but for multi-unit silicon probe recordings (90 recording sites across 5 mice (across trials (f): p = 3.1374e-14; across sessions (h): p = 0.27). i-l Same as a-d and e-h but for fiber photometric recordings of LHb bulk activity (n = 5 mice; across trials (j): p = 0.0849; across sessions (l): p = 0.0543). Mean trial ID for safe (cyan) and risky (magenta) choices for two-photon (m; n = 12 mice; p = 0.9697), silicon probe (n; n = 5 mice; p = 0.6250), and fiber photometry (o; n = 5 mice; p = 0.8125).Line colors indicate individual risk preference (risk averse (cyan), risk neutral (black), risk prone (magenta)). Two-sided Wilcoxon signed rank test (paired). *** p < 0.001. For box plots, the median is indicated by the central line; 25th and 75th percentiles are indicated by the box and maximum/minimum values excluding outliers are indicated by the whiskers.

Source data

Extended Data Fig. 7 Positive and negative risk-preference selective cells (RPSCs) show divergent activity upon reward delivery.

a, Illustration of reward period used for analysis. b, Example traces of three positive (top row) and three negative RPSCs (bottom row) aligned to reward delivery from three different animals (one positive and one negative cell for each mouse; from left to right: mouse #8, #2, and #13). Data are plotted as mean ± s.e.m. Quantification of mean activity integrals (c; p = 4.29E-07)) and fraction of cells with positive values (d; p = 1.67E -06) for medium safe reward for positive (blue) and negative (red) RPSCs. Same as c and d but for small risky lose (e, p = 5.26E -03 (activity);f, p = 1.18E -05 (fractions)) and for large risky win reward (g, p = 2.08E -04 (activity); h, p = 1.02E -11 (fractions). Reward signal ratios for safe/lose (i; p = 2.87E -04), safe/win (j; p = 7.42E -19), and win/lose (k; p = 9.86E -04).*** p < 0.001, two-sided Wilcoxon rank sum test (activity), χ2-test (cell fractions), or two-sampled Kolmogorov Smirnov test (activity ratios). For box plots, the median is indicated by the central line; 25th and 75th percentiles are indicated by the box and maximum/minimum values excluding outliers are indicated by the whiskers.

Source data

Extended Data Fig. 8 Anticipatory licking and preparatory mouth movement do not explain two-photon LHb single cell activity during the DP.

a, Mean number of anticipatory licks during the DP for preferred (violet) and non-preferred choice trials. Line colors indicate individual risk preference (risk averse (cyan), risk neutral (black), risk prone (magenta); p = 4.88E -04; two-sided Wilcoxon signed rank test). b, Correlation of mean DP activity with number of anticipatory licks for three example cells across three different mice. c, Mean correlation coefficient across all cells from individual mice for original (circle) and shuffled (triangle) data. d, Quantification of original and shuffled correlation coefficients (n = 12 mice; p = 0.8501; two-sided Wilcoxon signed rank test). Cell fractions (e, p = 6.055E -06; χ2-test), RPSC selectivity (f, p = 0.0182; two-sided Wilcoxon signed rank test) and correlation of RPSC DP activity difference between risky and safe choice with individual riskiness for present choices (g) calculated from trials without anticipatory licks. Positive RPSCs in blue negative RPSCs in red. h, Correlation of mean single cell activity with mouth movement during 1-s baseline period (BL), DP, and 1-s post-deliberation period (PDP; 483 cells from n = 12 mice; Friedman-test; ***p < 0.001; ns p > 0,05). i, Correlation of preparatory mouth movement ratios (mean across trials) with mean activity of LHb neurons during DP (520 cells from n = 12 mice). Cross-correlation lags of mean neuronal activity with mean preparatory mouth movement (j) and fraction of cells (k) based on 0.5 s-threshold (475 cells from n = 12 mice). l, Correlation of individual riskiness with preparatory mouth movement ratios (n = 12 mice). For box plots, the median is indicated by the central line; 25th and 75th percentiles are indicated by the box and maximum/minimum values excluding outliers are indicated by the whiskers.

Source data

Extended Data Fig. 9 LHb RPSCs adapt their selectivity DP with changing preference.

a, Fraction of non-preferred option choices with changing expected value ratio (n = 4 mice). Every dark circle represents 3-5 sessions with 200 free choice trials each. Sigmoid fit. b, Fractions of LHb RPSCs tracked across sessions depending on their adaptation to preference change (baseline sessions compared to last highest ratio sessions). Positive (blue) and negative (red) LHb RPSCs (selectivity and fraction of cells) depending on their responses: Cells either increased (c,d), inverted (e, f), or lost (g, h) their selectivity. All data are represented as mean ± s.e.m. *** p < 0.001, two-sided Wilcoxon rank sum test (activity) or χ2-test (cell fractions).

Source data

Extended Data Fig. 10 LH and MH fiber photometric signal in reward and post-reward period.

a, Illustration of reward period used for analysis. b, MH photometry example traces from one animal aligned to reward delivery. c, Quantification of MH population activity integrals aligned to reward delivery for medium safe (cyan), small risky lose (red), and large risky win (green) reward outcomes (p = 0.2199; n = 9 mice). Correlation of reward signal ratios and riskiness for safe/lose (d), safe/win (e), and win/lose (f). Same as a-f but for post-reward period (1-5 s post reward period; g-l; p = 0.4305). Same as a-l but for LH population activity (n = 9 mice; m-x; reward period p = 0.3228; post-reward period p = 0.4959).All data are plotted as mean ± s.e.m. ns: p > 0.05; repeated measure ANOVA with two-sided Bonferroni’s multiple comparison test. For box plots, the median is indicated by the central line; 25th and 75th percentiles are indicated by the box and maximum/minimum values excluding outliers are indicated by the whiskers.

Source data

Supplementary information

Supplementary Information

Supplementary Fig. 1: On-target and off-target labeling of anterograde tracing. Supplementary Fig. 2: On-target and off-target labeling of multi-fiber recordings. Supplementary Fig. 3: Off-target effect on decisiveness and choice preference of retrograde optogenetic perturbation. Supplementary Fig. 4: Optogenetic stimulation of hypothalamic terminals in acute LHb-containing brain slices. Supplementary Fig. 5: Fiber placement of individual mice across experimental approaches. Supplementary Data Table 1: Statistical tests and exact P values. Supplementary Data Table 2: Abbreviations of retrogradely labeled LHb input regions.

Reporting Summary

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groos, D., Reuss, A.M., Rupprecht, P. et al. A distinct hypothalamus–habenula circuit governs risk preference. Nat Neurosci 28, 361–373 (2025). https://doi.org/10.1038/s41593-024-01856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-024-01856-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing